Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop
This commit is contained in:
commit
0064ff1889
@ -19,7 +19,8 @@ class Survey(object):
|
||||
self.setParametersForShots()
|
||||
self._removeAllEmptyTraces()
|
||||
self._updateShots()
|
||||
|
||||
self.setArtificialPick(0, 0) # artificial pick at source origin
|
||||
|
||||
def _generateSurvey(self):
|
||||
from obspy.core import read
|
||||
|
||||
@ -34,17 +35,23 @@ class Survey(object):
|
||||
shot_dict[shotnumber] = seismicshot.SeismicShot(obsfile)
|
||||
shot_dict[shotnumber].setParameters('shotnumber', shotnumber)
|
||||
|
||||
self.setArtificialPick(0, 0) # artificial pick at source origin
|
||||
|
||||
self.data = shot_dict
|
||||
print ("Generated Survey object for %d shots" % len(shotlist))
|
||||
print ("Total number of traces: %d \n" %self.countAllTraces())
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
'''
|
||||
Sets an artificial pick for a traceID of all shots in the survey object.
|
||||
(This can be used to create a pick with t = 0 at the source origin)
|
||||
'''
|
||||
for shot in self.data.values():
|
||||
shot.setPick(traceID, pick)
|
||||
|
||||
def setParametersForShots(self, cutwindow = (0, 0.2), tmovwind = 0.3, tsignal = 0.03, tgap = 0.0007):
|
||||
if (cutwindow == (0, 0.2) and tmovwind == 0.3 and
|
||||
tsignal == 0.03 and tgap == 0.0007):
|
||||
print ("Warning: Standard values used for "
|
||||
"setParamters. This may not be clever.")
|
||||
"setParamters. This might not be clever.")
|
||||
# CHANGE this later. Parameters only needed for survey, not for each shot.
|
||||
for shot in self.data.values():
|
||||
shot.setCut(cutwindow)
|
||||
@ -121,14 +128,13 @@ class Survey(object):
|
||||
shot.setPickwindow(traceID, pickwin_used)
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
|
||||
# ++ TEST: set and check SNR before adding to distance bin ############################
|
||||
shot.setSNR(traceID)
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
# -- TEST: set and check SNR before adding to distance bin ############################
|
||||
|
||||
if shot.getPick(traceID) is not None:
|
||||
|
||||
# set epp and lpp if SNR > 1 (else earllatepicker cant set values)
|
||||
if shot.getSNR(traceID)[0] > 1:
|
||||
shot.setEarllatepick(traceID)
|
||||
|
||||
tpicksum += (datetime.now() - tstartpick); tpick = tpicksum/count
|
||||
@ -138,6 +144,22 @@ class Survey(object):
|
||||
self._update_progress(shot.getShotname(), tend, progress)
|
||||
print('\npickAllShots: Finished\n')
|
||||
|
||||
def recover(self):
|
||||
'''
|
||||
Recovers all (accidently) removed picks. Still regards SNR threshold.
|
||||
'''
|
||||
print('Recovering survey...')
|
||||
numpicks = 0
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getFlag(traceID) == 0:
|
||||
shot.setFlag(traceID, 1)
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
else:
|
||||
numpicks += 1
|
||||
print('Recovered %d picks'%numpicks)
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
for shot in self.data.values():
|
||||
shot.setPick(traceID, pick)
|
||||
@ -195,7 +217,7 @@ class Survey(object):
|
||||
for traceID in shot.getTraceIDlist():
|
||||
snrlist.append(shot.getSNR(traceID)[0])
|
||||
dist.append(shot.getDistance(traceID))
|
||||
if shot.getPick(traceID) is not None:
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
pickedTraces += 1
|
||||
info_dict[shot.getShotnumber()] = {'numtraces': numtraces,
|
||||
'picked traces': [pickedTraces,
|
||||
@ -236,7 +258,7 @@ class Survey(object):
|
||||
traceIDlist.sort()
|
||||
ttfile.writelines(str(self.countPickedTraces(shot)) + '\n')
|
||||
for traceID in traceIDlist:
|
||||
if shot.getPick(traceID) is not None:
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
pick = shot.getPick(traceID) * fmtomo_factor
|
||||
delta = shot.getPickError(traceID) * fmtomo_factor
|
||||
(x, y, z) = shot.getRecLoc(traceID)
|
||||
@ -253,14 +275,87 @@ class Survey(object):
|
||||
def countPickedTraces(self, shot):
|
||||
count = 0
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getPick(traceID) is not None:
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def plotAllPicks(self, plotDeleted = False):
|
||||
def countAllPickedTraces(self):
|
||||
count = 0
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def plotAllShots(self, rows = 3, columns = 4):
|
||||
'''
|
||||
Plots all picks over the distance between source and receiver. Returns (ax, region)
|
||||
Plots all shots as Matrices with the color corresponding to the traveltime for each receiver.
|
||||
IMPORTANT NOTE: Topography (z - coordinate) is not considered in the diagrams!
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
plt.interactive(True)
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
figPerSubplot = columns * rows
|
||||
|
||||
index = 1
|
||||
#shotnames = []
|
||||
#shotnumbers = []
|
||||
|
||||
# for shot in self.data.values():
|
||||
# shotnames.append(shot.getShotname())
|
||||
# shotnumbers.append(shot.getShotnumber())
|
||||
|
||||
# shotnumbers = [shotnumbers for (shotnumbers, shotnames) in sorted(zip(shotnumbers, shotnames))]
|
||||
|
||||
for shotnumber in self.getShotlist():
|
||||
if index <= figPerSubplot:
|
||||
#ax = fig.add_subplot(3,3,i, projection = '3d', title = 'shot:'
|
||||
#+str(shot_dict[shotnumber].getShotnumber()), xlabel = 'X', ylabel = 'Y', zlabel = 'traveltime')
|
||||
#shot_dict[shotnumber].plot3dttc(ax = ax, plotpicks = True)
|
||||
ax = fig.add_subplot(3, 4, index)
|
||||
self.getShot(shotnumber).matshow(ax = ax, colorbar = False, annotations = True)
|
||||
index += 1
|
||||
if index > figPerSubplot:
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
fig = plt.figure()
|
||||
index = 1
|
||||
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
|
||||
def plotAllPicks(self, plotRemoved = False, colorByVal = 'log10SNR', ax = None, refreshPlot = False):
|
||||
'''
|
||||
Plots all picks over the distance between source and receiver. Returns (ax, region).
|
||||
Picks can be checked and removed by using region class (pylot.core.active.surveyPlotTools.regions)
|
||||
|
||||
:param: plotRemoved, if True plots traces that were picked but removed from the survey (flag = 0)
|
||||
:type: logical
|
||||
|
||||
:param: colorByVal, can be "log10SNR", "pickerror", or "spe"
|
||||
:type: str
|
||||
|
||||
Examples:
|
||||
|
||||
regions.chooseRectangles():
|
||||
- lets the user choose several rectangular regions in the plot
|
||||
|
||||
regions.plotTracesInRegions():
|
||||
- creates plots (shot.plot_traces) for all traces in the active regions (i.e. chosen by e.g. chooseRectangles)
|
||||
|
||||
regions.setActiveRegionsForDeletion():
|
||||
- highlights all shots in a the active regions for deletion
|
||||
|
||||
regions.deleteMarkedPicks():
|
||||
- deletes the picks (pick flag set to 0) for all shots set for deletion
|
||||
|
||||
regions.deselectSelection(number):
|
||||
- deselects the region of number = number
|
||||
|
||||
'''
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
plt.interactive(True)
|
||||
@ -268,38 +363,50 @@ class Survey(object):
|
||||
|
||||
dist = []
|
||||
pick = []
|
||||
snrloglist = []
|
||||
snrlog = []
|
||||
pickerror = []
|
||||
spe = []
|
||||
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if plotDeleted == False:
|
||||
if shot.getPick(traceID) is not None:
|
||||
if plotRemoved == False:
|
||||
if shot.getFlag(traceID) is not 0 or plotRemoved == True:
|
||||
dist.append(shot.getDistance(traceID))
|
||||
pick.append(shot.getPick(traceID))
|
||||
snrloglist.append(math.log10(shot.getSNR(traceID)[0]))
|
||||
elif plotDeleted == True:
|
||||
dist.append(shot.getDistance(traceID))
|
||||
pick.append(shot.getPick(traceID))
|
||||
snrloglist.append(math.log10(shot.getSNR(traceID)[0]))
|
||||
snrlog.append(math.log10(shot.getSNR(traceID)[0]))
|
||||
pickerror.append(shot.getPickError(traceID))
|
||||
spe.append(shot.getSymmetricPickError(traceID))
|
||||
|
||||
ax = self.createPlot(dist, pick, snrloglist, label = 'log10(SNR)')
|
||||
region = regions(ax, self.data)
|
||||
ax.legend()
|
||||
color = {'log10SNR': snrlog,
|
||||
'pickerror': pickerror,
|
||||
'spe': spe}
|
||||
|
||||
return ax, region
|
||||
if refreshPlot is False:
|
||||
ax = self.createPlot(dist, pick, color[colorByVal], label = '%s'%colorByVal)
|
||||
region = regions(ax, self)
|
||||
ax.legend()
|
||||
return ax, region
|
||||
elif refreshPlot is True:
|
||||
ax = self.createPlot(dist, pick, color[colorByVal], label = '%s'%colorByVal, ax = ax)
|
||||
ax.legend()
|
||||
return ax
|
||||
|
||||
def createPlot(self, dist, pick, inkByVal, label):
|
||||
def createPlot(self, dist, pick, inkByVal, label, ax = None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
cm = plt.cm.jet
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
fig = ax.scatter(dist, pick, cmap = cm, c = inkByVal, s = 5, edgecolors = 'none', label = label)
|
||||
cbar = plt.colorbar(fig, fraction = 0.05)
|
||||
cbar.set_label(label)
|
||||
plt.title('Plot of all Picks')
|
||||
plt.xlabel('Distance [m]')
|
||||
plt.ylabel('Time [s]')
|
||||
if ax is None:
|
||||
print('Generating new plot...')
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
fig = ax.scatter(dist, pick, cmap = cm, c = inkByVal, s = 5, edgecolors = 'none', label = label)
|
||||
cbar = plt.colorbar(fig, fraction = 0.05)
|
||||
cbar.set_label(label)
|
||||
plt.title('Plot of all Picks')
|
||||
plt.xlabel('Distance [m]')
|
||||
plt.ylabel('Time [s]')
|
||||
else:
|
||||
ax.scatter(dist, pick, cmap = cm, c = inkByVal, s = 5, edgecolors = 'none', label = label)
|
||||
|
||||
return ax
|
||||
|
||||
|
@ -128,7 +128,12 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
raynumber += 1
|
||||
firstline = infile.readline()
|
||||
if firstline == '': break # break at EOF
|
||||
raynumber = int(firstline.split()[0])
|
||||
shotnumber = int(firstline.split()[1])
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
if rayValid == 0:
|
||||
print('Invalid ray number %d for shot number %d'%(raynumber, shotnumber))
|
||||
continue
|
||||
nRayPoints = int(infile.readline().split()[0])
|
||||
if not shotnumber in rays.keys():
|
||||
rays[shotnumber] = {}
|
||||
|
@ -1,107 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
from obspy import read
|
||||
from obspy import Stream
|
||||
from obspy import Trace
|
||||
from datetime import datetime
|
||||
import numpy as np
|
||||
|
||||
from pylot.core.active import surveyUtils
|
||||
from pylot.core.active import seismicshot
|
||||
import activeSeismoPick
|
||||
reload(seismicshot)
|
||||
reload(surveyUtils)
|
||||
|
||||
#####################################################################################
|
||||
# parameter definitions:#############################################################
|
||||
#traceslist = list(np.arange(1, 49, 1)) # traces (1-48)
|
||||
#shotlist = list(np.arange(302, 352, 1)) # shot-files(.dat) (Paffrath: 302-352) (Hauburg: 353-401) (arange+1!)
|
||||
cutwindow = (0, 0.2) # cut out a part of the trace [seconds]
|
||||
tmovwind = 0.3 # size of the moving window
|
||||
windowsize = (5, 0) # windowsize for AIC picker (indices around HOS picks!!)
|
||||
pickwindow = cutwindow # for local max and threshold picker: fraction of the seismogram used (0...1) TO BE DONE: depends on cutwindow!!!!
|
||||
folm = 0.6
|
||||
|
||||
rockeskyll = False
|
||||
if rockeskyll == True:
|
||||
receiverfile = "Geophone_interpoliert_rockes"
|
||||
sourcefile = "Schusspunkte_rockes"
|
||||
obsdir = "/rscratch/minos22/marcel/flachseismik/rockeskyll_200615_270615/"
|
||||
filename = 'survey_rockes.pickle'
|
||||
else:
|
||||
receiverfile = "Geophone_interpoliert_GZB"
|
||||
sourcefile = "Schusspunkte_GZB"
|
||||
obsdir = "/rscratch/minos22/marcel/flachseismik/GZB_26_06_15_01/"
|
||||
filename = 'survey_GZB.pickle'
|
||||
|
||||
# SNR
|
||||
tsignal = 0.03
|
||||
tgap = 0.0007
|
||||
snrthreshold = 1
|
||||
######################################################################################
|
||||
|
||||
vmin = 333
|
||||
vmax = 5500
|
||||
distBinSize = 2
|
||||
|
||||
###########################################
|
||||
############# Settings: ###################
|
||||
thresholdpick=True
|
||||
localmaxpick=False
|
||||
|
||||
if thresholdpick == True: pickmethod = "threshold"
|
||||
if localmaxpick == True: pickmethod = "localmax"
|
||||
|
||||
HosAic = 'hos' # can be 'hos' or 'aic'
|
||||
###########################################
|
||||
|
||||
starttime = datetime.now()
|
||||
|
||||
print '\n--------------------Starting Script at %s -------------------\n' %starttime.time()
|
||||
if thresholdpick == True: print 'Using treshold pickmethod!\n'
|
||||
elif localmaxpick == True: print 'Using local maximum pick method!\n'
|
||||
if HosAic == 'aic': print 'picking with AIC\n'
|
||||
if HosAic == 'hos': print 'picking with HOS\n'
|
||||
|
||||
survey = activeSeismoPick.Survey(obsdir, sourcefile, receiverfile, True)
|
||||
surveyUtils.setFittedSNR(survey.getShotDict())
|
||||
print '\nDone after %s seconds!\n------------------------------------------------------------------------------\n' % (datetime.now() - starttime).seconds
|
||||
|
||||
count = 0; tpicksum = starttime - starttime
|
||||
|
||||
for shot in survey.data.values():
|
||||
tstartpick = datetime.now(); count += 1
|
||||
for traceID in shot.getTraceIDlist():
|
||||
distance = shot.getDistance(traceID) # receive distance
|
||||
|
||||
pickwin_used = pickwindow # use pickwindow set in the parameter section
|
||||
# for higher distances use a linear vmin/vmax to cut out late/early regions with high noise
|
||||
if distance > 5.:
|
||||
pwleft = distance/vmax ################## TEST
|
||||
pwright = distance/vmin
|
||||
if pwright > cutwindow[1]:
|
||||
pwright = cutwindow[1]
|
||||
pickwin_used = (pwleft, pwright)
|
||||
|
||||
shot.setPickwindow(traceID, pickwin_used)
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
#shot.setManualPicks(traceID, picklist) # set manual picks if given (yet used on 2D only)
|
||||
|
||||
# ++ TEST: set and check SNR before adding to distance bin ############################
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
# -- TEST: set and check SNR before adding to distance bin ############################
|
||||
|
||||
if shot.getPick(traceID) is not None:
|
||||
shot.setEarllatepick(traceID)
|
||||
|
||||
tpicksum += (datetime.now() - tstartpick); tpick = tpicksum/count
|
||||
tremain = (tpick * (len(survey.getShotDict()) - count))
|
||||
tend = datetime.now() + tremain
|
||||
print 'shot: %s, est. time to be finished is %s:%s:%s' % (shot.getShotname(), tend.hour, tend.minute, tend.second)
|
||||
|
||||
survey.saveSurvey(filename)
|
||||
print '\n--- Finished script ---'
|
||||
print 'Elapsed time:', datetime.now()-starttime
|
@ -491,7 +491,11 @@ class SeisArray(object):
|
||||
plt.legend()
|
||||
if annotations == True:
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
plt.annotate(str(traceID), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small')
|
||||
plt.annotate((' ' + str(traceID)), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small', color = 'k')
|
||||
for shotnumber in self.getSourceLocations().keys():
|
||||
plt.annotate((' ' + str(shotnumber)), xy = (self._getXshot(shotnumber), self._getYshot(shotnumber)), fontsize = 'x-small', color = 'b')
|
||||
|
||||
|
||||
|
||||
def plotArray3D(self, ax = None):
|
||||
import matplotlib.pyplot as plt
|
||||
|
@ -1,666 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
|
||||
class SeisArray(object):
|
||||
'''
|
||||
Can be used to interpolate missing values of a receiver grid, if only support points were measured.
|
||||
Input file should contain in each line: ('traceID' 'receiverLineID' 'number of the geophone on recLine' 'X' 'Y' 'Z')
|
||||
|
||||
Can be used to generate a velocity grid file (vgrids.in) for FMTOMO with a topography adapting gradient.
|
||||
|
||||
Can be used to generate an interface file for FMTOMO (right now only interface.z used by grid3dg) for the topography.
|
||||
|
||||
Supports vtk output for sources and receivers.
|
||||
Note: Source and Receiver files for FMTOMO will be generated by the Survey object (because traveltimes will be added directly).
|
||||
'''
|
||||
def __init__(self, recfile):
|
||||
self._receiverlines = {}
|
||||
self._receiverCoords = {}
|
||||
self._measuredReceivers = {}
|
||||
self._measuredTopo = {}
|
||||
self._sourceLocs = {}
|
||||
self._geophoneNumbers = {}
|
||||
self._receiverlist = open(recfile, 'r').readlines()
|
||||
self._generateReceiverlines()
|
||||
self._setReceiverCoords()
|
||||
self._setGeophoneNumbers()
|
||||
|
||||
def _generateReceiverlines(self):
|
||||
'''
|
||||
Connects the traceIDs to the lineIDs
|
||||
for each receiverline in a dictionary.
|
||||
'''
|
||||
for receiver in self._receiverlist:
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
if not lineID in self._receiverlines.keys():
|
||||
self._receiverlines[lineID] = []
|
||||
self._receiverlines[lineID].append(traceID)
|
||||
|
||||
def _setReceiverCoords(self):
|
||||
'''
|
||||
Fills the three x, y, z dictionaries with measured coordinates
|
||||
'''
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
x = float(line.split()[3])
|
||||
y = float(line.split()[4])
|
||||
z = float(line.split()[5])
|
||||
self._receiverCoords[traceID] = (x, y, z)
|
||||
self._measuredReceivers[traceID] = (x, y, z)
|
||||
|
||||
def _setGeophoneNumbers(self):
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
gphoneNum = float(line.split()[2])
|
||||
self._geophoneNumbers[traceID] = gphoneNum
|
||||
|
||||
def _getReceiverlines(self):
|
||||
return self._receiverlines
|
||||
|
||||
def _getReceiverlist(self):
|
||||
return self._receiverlist
|
||||
|
||||
def getReceiverCoordinates(self):
|
||||
return self._receiverCoords
|
||||
|
||||
def _getXreceiver(self, traceID):
|
||||
return self._receiverCoords[traceID][0]
|
||||
|
||||
def _getYreceiver(self, traceID):
|
||||
return self._receiverCoords[traceID][1]
|
||||
|
||||
def _getZreceiver(self, traceID):
|
||||
return self._receiverCoords[traceID][2]
|
||||
|
||||
def _getXshot(self, shotnumber):
|
||||
return self._sourceLocs[shotnumber][0]
|
||||
|
||||
def _getYshot(self, shotnumber):
|
||||
return self._sourceLocs[shotnumber][1]
|
||||
|
||||
def _getZshot(self, shotnumber):
|
||||
return self._sourceLocs[shotnumber][2]
|
||||
|
||||
def _getReceiverValue(self, traceID, coordinate):
|
||||
setCoordinate = {'X': self._getXreceiver,
|
||||
'Y': self._getYreceiver,
|
||||
'Z': self._getZreceiver}
|
||||
return setCoordinate[coordinate](traceID)
|
||||
|
||||
def _getGeophoneNumber(self, traceID):
|
||||
return self._geophoneNumbers[traceID]
|
||||
|
||||
def getMeasuredReceivers(self):
|
||||
return self._measuredReceivers
|
||||
|
||||
def getMeasuredTopo(self):
|
||||
return self._measuredTopo
|
||||
|
||||
def getSourceLocations(self):
|
||||
return self._sourceLocs
|
||||
|
||||
def _setXvalue(self, traceID, value):
|
||||
self._checkKey(traceID)
|
||||
self._receiverCoords[traceID][0] = value
|
||||
|
||||
def _setYvalue(self, traceID, value):
|
||||
self._checkKey(traceID)
|
||||
self._receiverCoords[traceID][1] = value
|
||||
|
||||
def _setZvalue(self, traceID, value):
|
||||
self._checkKey(traceID)
|
||||
self._receiverCoords[traceID][2] = value
|
||||
|
||||
def _setValue(self, traceID, coordinate, value):
|
||||
setCoordinate = {'X': self._setXvalue,
|
||||
'Y': self._setYvalue,
|
||||
'Z': self._setZvalue}
|
||||
setCoordinate[coordinate](traceID, value)
|
||||
|
||||
def _checkKey(self, traceID):
|
||||
if not traceID in self._receiverCoords.keys():
|
||||
self._receiverCoords[traceID] = [None, None, None]
|
||||
|
||||
def _checkTraceIDdirection(self, traceID1, traceID2):
|
||||
if traceID2 > traceID1:
|
||||
direction = +1
|
||||
return direction
|
||||
if traceID2 < traceID1:
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
|
||||
def _checkCoordDirection(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Checks whether the interpolation direction is positive or negative
|
||||
'''
|
||||
if self._getReceiverValue(traceID1, coordinate) < self._getReceiverValue(traceID2, coordinate):
|
||||
direction = +1
|
||||
return direction
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
|
||||
def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Returns the mean distance between two traceID's depending on the number of geophones in between
|
||||
'''
|
||||
num_spaces = abs(self._getGeophoneNumber(traceID1) - self._getGeophoneNumber(traceID2))
|
||||
mean_distance = abs(self._getReceiverValue(traceID1, coordinate) - self._getReceiverValue(traceID2, coordinate))/num_spaces
|
||||
return mean_distance
|
||||
|
||||
def interpolateValues(self, coordinate):
|
||||
'''
|
||||
Interpolates and sets all values (linear) for coordinate = 'X', 'Y' or 'Z'
|
||||
'''
|
||||
for lineID in self._getReceiverlines().keys():
|
||||
number_measured = len(self._getReceiverlines()[lineID])
|
||||
for index, traceID1 in enumerate(self._getReceiverlines()[lineID]):
|
||||
if index + 1 < number_measured:
|
||||
traceID2 = self._getReceiverlines()[lineID][index + 1]
|
||||
|
||||
traceID_dir = self._checkTraceIDdirection(traceID1, traceID2)
|
||||
traceID_interp = traceID1 + traceID_dir
|
||||
|
||||
coord_dir = self._checkCoordDirection(traceID1, traceID2, coordinate)
|
||||
mean_distance = self._interpolateMeanDistances(traceID1, traceID2, coordinate)
|
||||
|
||||
while (traceID_dir * traceID_interp) < (traceID_dir * traceID2):
|
||||
self._setValue(traceID_interp, coordinate,
|
||||
(self._getReceiverValue(traceID_interp - traceID_dir, coordinate)
|
||||
+ coord_dir * (mean_distance)))
|
||||
traceID_interp += traceID_dir
|
||||
|
||||
def addMeasuredTopographyPoints(self, filename):
|
||||
'''
|
||||
Use more measured points for a higher precision of height interpolation.
|
||||
Input file should contain in each line: ('point ID' 'X' 'Y' 'Z')
|
||||
'''
|
||||
topolist = open(filename, 'r').readlines()
|
||||
for line in topolist:
|
||||
line = line.split()
|
||||
pointID = int(line[0])
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._measuredTopo[pointID] = (x, y, z)
|
||||
|
||||
def addSourceLocations(self, filename):
|
||||
'''
|
||||
Use source locations for a higher precision of height interpolation.
|
||||
Input file should contain in each line: ('point ID' 'X' 'Y' 'Z')
|
||||
|
||||
Source locations must be added before they can be written to vtk files.
|
||||
'''
|
||||
topolist = open(filename, 'r').readlines()
|
||||
for line in topolist:
|
||||
line = line.split()
|
||||
pointID = int(line[0])
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
|
||||
def interpZcoords4rec(self, method = 'linear'):
|
||||
'''
|
||||
Interpolates z values for all receivers.
|
||||
'''
|
||||
measured_x, measured_y, measured_z = self.getAllMeasuredPointsLists()
|
||||
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
if type(self.getReceiverCoordinates()[traceID]) is not tuple:
|
||||
z = griddata((measured_x, measured_y), measured_z, (self._getXreceiver(traceID), self._getYreceiver(traceID)), method = method)
|
||||
self._setZvalue(traceID, float(z))
|
||||
|
||||
def _getAngle(self, distance):
|
||||
'''
|
||||
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
|
||||
'''
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
angle = distance * 180 / (PI * R)
|
||||
return angle
|
||||
|
||||
def _getDistance(self, angle):
|
||||
'''
|
||||
Function returns the distance [km] on a Sphere of the radius R = 6371 [km] for an angle.
|
||||
'''
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
distance = angle / 180 * (PI * R)
|
||||
return distance
|
||||
|
||||
def getMeasuredReceiverLists(self):
|
||||
'''
|
||||
Returns a list of all measured receivers known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for traceID in self.getMeasuredReceivers().keys():
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
y.append(self.getMeasuredReceivers()[traceID][1])
|
||||
z.append(self.getMeasuredReceivers()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
def getMeasuredTopoLists(self):
|
||||
'''
|
||||
Returns a list of all measured topography points known to the SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getMeasuredTopo().keys():
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
y.append(self.getMeasuredTopo()[pointID][1])
|
||||
z.append(self.getMeasuredTopo()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getSourceLocsLists(self):
|
||||
'''
|
||||
Returns a list of all measured source locations known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getSourceLocations().keys():
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
y.append(self.getSourceLocations()[pointID][1])
|
||||
z.append(self.getSourceLocations()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getAllMeasuredPointsLists(self):
|
||||
'''
|
||||
Returns a list of all measured points known to SeisArray.
|
||||
'''
|
||||
mtopo_x, mtopo_y, mtopo_z = self.getMeasuredTopoLists()
|
||||
msource_x, msource_y, msource_z = self.getSourceLocsLists()
|
||||
mrec_x, mrec_y, mrec_z = self.getMeasuredReceiverLists()
|
||||
|
||||
x = mtopo_x + mrec_x + msource_x
|
||||
y = mtopo_y + mrec_y + msource_y
|
||||
z = mtopo_z + mrec_z + msource_z
|
||||
return x, y, z
|
||||
|
||||
def getReceiverLists(self):
|
||||
'''
|
||||
Returns a list of all receivers (measured and interpolated).
|
||||
'''
|
||||
x = []; y =[]; z = []
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
x.append(self.getReceiverCoordinates()[traceID][0])
|
||||
y.append(self.getReceiverCoordinates()[traceID][1])
|
||||
z.append(self.getReceiverCoordinates()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
def _interpolateXY4rec(self):
|
||||
'''
|
||||
Interpolates the X and Y coordinates for all receivers.
|
||||
'''
|
||||
for coordinate in ('X', 'Y'):
|
||||
self.interpolateValues(coordinate)
|
||||
|
||||
def interpolateAll(self):
|
||||
self._interpolateXY4rec()
|
||||
self.interpZcoords4rec()
|
||||
|
||||
def interpolateTopography(self, nTheta, nPhi, thetaSN, phiWE, method = 'linear', filename = 'interface1.in'):
|
||||
'''
|
||||
Interpolate Z values on a regular grid with cushion nodes to use it as FMTOMO topography interface.
|
||||
Returns a surface in form of a list of points [[x1, y1, z1], [x2, y2, y2], ...] (cartesian).
|
||||
|
||||
:param: nTheta, number of points in theta (NS)
|
||||
type: integer
|
||||
|
||||
:param: nPhi, number of points in phi (WE)
|
||||
type: integer
|
||||
|
||||
:param: thetaSN (S, N) extensions of the model in degree
|
||||
type: tuple
|
||||
|
||||
:param: phiWE (W, E) extensions of the model in degree
|
||||
type: tuple
|
||||
'''
|
||||
|
||||
surface = []
|
||||
elevation = 0.25 # elevate topography so that no source lies above the surface
|
||||
|
||||
if filename is not None:
|
||||
outfile = open(filename, 'w')
|
||||
|
||||
print "Interpolating topography on regular grid with the dimensions:"
|
||||
print "nTheta = %s, nPhi = %s, thetaSN = %s, phiWE = %s"%(nTheta, nPhi, thetaSN, phiWE)
|
||||
print "method = %s, filename = %s" %(method, filename)
|
||||
|
||||
thetaS, thetaN = thetaSN
|
||||
phiW, phiE = phiWE
|
||||
|
||||
measured_x, measured_y, measured_z = self.getAllMeasuredPointsLists()
|
||||
|
||||
# need to determine the delta to add two cushion nodes around the min/max values
|
||||
thetaDelta = (thetaN - thetaS) / (nTheta - 1)
|
||||
phiDelta = (phiE - phiW) / (nPhi - 1)
|
||||
|
||||
thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(thetaGrid) * len(phiGrid); count = 0
|
||||
for theta in thetaGrid:
|
||||
for phi in phiGrid:
|
||||
xval = self._getDistance(phi)
|
||||
yval = self._getDistance(theta)
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = method)
|
||||
# in case the point lies outside, nan will be returned. Find nearest:
|
||||
if np.isnan(z) == True:
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = 'nearest')
|
||||
z = float(z)
|
||||
surface.append((xval, yval, z))
|
||||
count += 1
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
if filename is not None:
|
||||
outfile.writelines('%10s\n'%(z + elevation))
|
||||
|
||||
return surface
|
||||
|
||||
def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
|
||||
thetaSN = (-0.2, 1.2), phiWE = (-0.2, 1.2),
|
||||
Rbt = (-62.0, 6.0), vbot = 5.5, filename = 'vgrids.in',
|
||||
method = 'linear' ):
|
||||
'''
|
||||
Generate a velocity grid for fmtomo regarding topography with a linear gradient starting at the topography with 0.34 [km/s].
|
||||
|
||||
:param: nTheta, number of points in theta (NS)
|
||||
type: integer
|
||||
|
||||
:param: nPhi, number of points in phi (WE)
|
||||
type: integer
|
||||
|
||||
:param: nR, number of points in depth
|
||||
type: integer
|
||||
|
||||
:param: thetaSN (S, N) extensions of the model in degree
|
||||
type: tuple
|
||||
|
||||
:param: phiWE (W, E) extensions of the model in degree
|
||||
type: tuple
|
||||
|
||||
:param: Rbt (bot, top) extensions of the model in km
|
||||
type: tuple
|
||||
|
||||
:param: vbot, velocity at the bottom of the model
|
||||
type: real
|
||||
'''
|
||||
|
||||
def getRad(angle):
|
||||
PI = np.pi
|
||||
rad = angle / 180 * PI
|
||||
return rad
|
||||
|
||||
def getZmax(surface):
|
||||
z = []
|
||||
for point in surface:
|
||||
z.append(point[2])
|
||||
return max(z)
|
||||
|
||||
R = 6371
|
||||
vmin = 0.34
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(filename, 'w')
|
||||
|
||||
thetaS, thetaN = thetaSN
|
||||
phiW, phiE = phiWE
|
||||
rbot = Rbt[0] + R
|
||||
rtop = Rbt[1] + R
|
||||
|
||||
# need to determine the delta to add two cushion nodes around the min/max values
|
||||
thetaDelta = abs(thetaN - thetaS) / (nTheta - 1)
|
||||
phiDelta = abs(phiE - phiW) / (nPhi - 1)
|
||||
rDelta = abs(rbot - rtop) / (nR - 1)
|
||||
|
||||
# create a regular grid including +2 cushion nodes in every direction
|
||||
thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
|
||||
rGrid = np.linspace(rbot - rDelta, rtop + rDelta, num = nR + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(rGrid) * len(thetaGrid) * len(phiGrid)
|
||||
print "Total number of grid nodes: %s"%nTotal
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR + 2, nTheta + 2, nPhi + 2))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rDelta, getRad(thetaDelta), getRad(phiDelta)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rbot - rDelta, getRad(thetaS - thetaDelta), getRad(phiW - phiDelta)))
|
||||
|
||||
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method, filename = None)
|
||||
zmax = getZmax(surface)
|
||||
|
||||
print "\nGenerating velocity grid for FMTOMO. Output filename = %s, interpolation method = %s"%(filename, method)
|
||||
print "nTheta = %s, nPhi = %s, nR = %s, thetaSN = %s, phiWE = %s, Rbt = %s"%(nTheta, nPhi, nR, thetaSN, phiWE, Rbt)
|
||||
count = 0
|
||||
for radius in rGrid:
|
||||
for theta in thetaGrid:
|
||||
for phi in phiGrid:
|
||||
xval = self._getDistance(phi)
|
||||
yval = self._getDistance(theta)
|
||||
for point in surface:
|
||||
if point[0] == xval and point[1] == yval:
|
||||
z = point[2]
|
||||
if radius > (R + z + 1):
|
||||
vel = 0.0
|
||||
# elif radius > (R + z - 15): ########### TESTING
|
||||
# vel = (radius - z - R) / (Rbt[0] - rDelta - zmax) * 1.0 + vmin ##########################
|
||||
else:
|
||||
vel = (radius - z - R) / (Rbt[0] - rDelta - zmax) * vbot + vmin ##########################
|
||||
count += 1
|
||||
outfile.writelines('%10s %10s\n'%(vel, decm))
|
||||
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
outfile.close()
|
||||
|
||||
def exportAll(self, filename = 'interpolated_receivers.out'):
|
||||
recfile_out = open(filename, 'w')
|
||||
count = 0
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
count += 1
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" %(count, filename)
|
||||
recfile_out.close()
|
||||
|
||||
def plotArray2D(self, plot_topo = False, highlight_measured = False, annotations = True):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
plt.figure()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xsc, ysc, zsc = self.getSourceLocsLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
|
||||
plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers')
|
||||
plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations')
|
||||
|
||||
if plot_topo == True:
|
||||
plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points')
|
||||
if highlight_measured == True:
|
||||
plt.plot(xmr, ymr, 'ro', label = 'measured receivers')
|
||||
|
||||
plt.xlabel('X [m]')
|
||||
plt.ylabel('Y [m]')
|
||||
plt.legend()
|
||||
if annotations == True:
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
plt.annotate(str(traceID), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small')
|
||||
|
||||
def plotArray3D(self, ax = None):
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
plt.interactive(True)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xin, yin, zin = self.getReceiverLists()
|
||||
|
||||
ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points')
|
||||
ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers')
|
||||
ax.plot(xmr, ymr, zmr, 'ro', label = 'measured receivers')
|
||||
ax.set_xlabel('X'); ax.set_ylabel('Y'); ax.set_zlabel('elevation')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'):
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
plt.interactive(True)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
|
||||
x = xmt + xmr
|
||||
y = ymt + ymr
|
||||
z = zmt + zmr
|
||||
|
||||
xaxis = np.arange(min(x)+1, max(x), step)
|
||||
yaxis = np.arange(min(y)+1, max(y), step)
|
||||
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
|
||||
ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
|
||||
|
||||
ax.set_zlim(-(max(x) - min(x)/2),(max(x) - min(x)/2))
|
||||
ax.set_aspect('equal')
|
||||
|
||||
ax.set_xlabel('X'); ax.set_ylabel('Y'); ax.set_zlabel('elevation')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
def _update_progress(self, progress):
|
||||
sys.stdout.write("%d%% done \r" % (progress) )
|
||||
sys.stdout.flush()
|
||||
|
||||
def receivers2VTK(self, filename = 'receivers.vtk'):
|
||||
'''
|
||||
Generates vtk files from all receivers of the SeisArray object.
|
||||
'''
|
||||
outfile = open(filename, 'w')
|
||||
traceIDs = []
|
||||
|
||||
for traceID in self.getReceiverCoordinates():
|
||||
traceIDs.append(traceID)
|
||||
|
||||
nPoints = len(traceIDs)
|
||||
|
||||
# write header
|
||||
print("Writing header for VTK file...")
|
||||
outfile.writelines('# vtk DataFile Version 3.1\n')
|
||||
outfile.writelines('Receivers with traceIDs\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
for traceID in traceIDs:
|
||||
x = self._getXreceiver(traceID)
|
||||
y = self._getYreceiver(traceID)
|
||||
z = self._getZreceiver(traceID)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS traceIDs int %d\n' %(1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write traceIDs
|
||||
print("Writing traceIDs to VTK file...")
|
||||
for traceID in traceIDs:
|
||||
outfile.writelines('%10d\n' %traceID)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote receiver grid for %d points to file: %s" %(nPoints, filename))
|
||||
return
|
||||
|
||||
def sources2VTK(self, filename = 'sources.vtk'):
|
||||
'''
|
||||
Generates vtk-files for all source locations in the SeisArray object.
|
||||
'''
|
||||
outfile = open(filename, 'w')
|
||||
shotnumbers = []
|
||||
|
||||
for shotnumber in self.getSourceLocations():
|
||||
shotnumbers.append(shotnumber)
|
||||
|
||||
nPoints = len(shotnumbers)
|
||||
|
||||
# write header
|
||||
print("Writing header for VTK file...")
|
||||
outfile.writelines('# vtk DataFile Version 3.1\n')
|
||||
outfile.writelines('Shots with shotnumbers\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
for shotnumber in shotnumbers:
|
||||
x = self._getXshot(shotnumber)
|
||||
y = self._getYshot(shotnumber)
|
||||
z = self._getZshot(shotnumber)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS shotnumbers int %d\n' %(1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write shotnumber
|
||||
print("Writing shotnumbers to VTK file...")
|
||||
for shotnumber in shotnumbers:
|
||||
outfile.writelines('%10d\n' %shotnumber)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote receiver grid for %d points to file: %s" %(nPoints, filename))
|
||||
return
|
||||
|
||||
|
||||
def saveSeisArray(self, filename = 'seisArray.pickle'):
|
||||
import cPickle
|
||||
outfile = open(filename, 'wb')
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved SeisArray to file %s'%(filename))
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
import cPickle
|
||||
infile = open(filename, 'rb')
|
||||
return cPickle.load(infile)
|
@ -10,6 +10,8 @@ from pylot.core.pick.CharFuns import HOScf
|
||||
from pylot.core.pick.CharFuns import AICcf
|
||||
from pylot.core.pick.utils import getSNR
|
||||
from pylot.core.pick.utils import earllatepicker
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive('True')
|
||||
|
||||
class SeismicShot(object):
|
||||
'''
|
||||
@ -27,9 +29,6 @@ class SeismicShot(object):
|
||||
self.srcCoordlist = None
|
||||
self.traceIDs = None
|
||||
self.pick = {}
|
||||
self.pick_backup = {}
|
||||
self.earliest = {}
|
||||
self.latest = {}
|
||||
self.pickwindow= {}
|
||||
self.manualpicks= {}
|
||||
self.snr = {}
|
||||
@ -132,17 +131,27 @@ class SeismicShot(object):
|
||||
def getSourcefile(self):
|
||||
return self.paras['sourcefile']
|
||||
|
||||
def getPick(self, traceID):
|
||||
return self.pick[traceID]
|
||||
def getPick(self, traceID, returnRemoved = False):
|
||||
if not self.getFlag(traceID) == 0:
|
||||
return self.pick[traceID]['mpp']
|
||||
if returnRemoved == True:
|
||||
#print('getPick: Returned removed pick for shot %d, traceID %d' %(self.getShotnumber(), traceID))
|
||||
return self.pick[traceID]['mpp']
|
||||
|
||||
def getPick_backup(self, traceID):
|
||||
return self.pick_backup[traceID]
|
||||
def getPickIncludeRemoved(self, traceID):
|
||||
return self.getPick(traceID, returnRemoved = True)
|
||||
|
||||
def getEarliest(self, traceID):
|
||||
return self.earliest[traceID]
|
||||
return self.pick[traceID]['epp']
|
||||
|
||||
def getLatest(self, traceID):
|
||||
return self.latest[traceID]
|
||||
return self.pick[traceID]['lpp']
|
||||
|
||||
def getSymmetricPickError(self, traceID):
|
||||
pickerror = self.pick[traceID]['spe']
|
||||
if np.isnan(pickerror) == True:
|
||||
print "SPE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID)
|
||||
return pickerror
|
||||
|
||||
def getPickError(self, traceID):
|
||||
pickerror = abs(self.getEarliest(traceID) - self.getLatest(traceID))
|
||||
@ -217,7 +226,7 @@ class SeismicShot(object):
|
||||
:type: int
|
||||
'''
|
||||
return HOScf(self.getSingleStream(traceID), self.getCut(),
|
||||
self.getTmovwind(), self.getOrder())
|
||||
self.getTmovwind(), self.getOrder(), stealthMode = True)
|
||||
|
||||
def getAICcf(self, traceID):
|
||||
'''
|
||||
@ -240,7 +249,7 @@ class SeismicShot(object):
|
||||
tr_cf = Trace()
|
||||
tr_cf.data = self.getHOScf(traceID).getCF()
|
||||
st_cf += tr_cf
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind())
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind(), stealthMode = True)
|
||||
|
||||
def getSingleStream(self, traceID): ########## SEG2 / SEGY ? ##########
|
||||
'''
|
||||
@ -305,16 +314,17 @@ class SeismicShot(object):
|
||||
'aic': aiccftime}
|
||||
|
||||
self.setPick(traceID, setHosAic[HosAic])
|
||||
self.pick_backup[traceID] = setHosAic[HosAic] ### verbessern (vor allem weil ueberschrieben bei 2tem mal picken)
|
||||
|
||||
def setEarllatepick(self, traceID, nfac = 1.5):
|
||||
tgap = self.getTgap()
|
||||
tsignal = self.getTsignal()
|
||||
tnoise = self.getPick(traceID) - tgap
|
||||
tnoise = self.getPickIncludeRemoved(traceID) - tgap
|
||||
|
||||
(self.earliest[traceID], self.latest[traceID], tmp) = earllatepicker(self.getSingleStream(traceID),
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPick(traceID))
|
||||
(self.pick[traceID]['epp'], self.pick[traceID]['lpp'],
|
||||
self.pick[traceID]['spe']) = earllatepicker(self.getSingleStream(traceID),
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPickIncludeRemoved(traceID),
|
||||
stealthMode = True)
|
||||
|
||||
def threshold(self, hoscf, aiccf, windowsize, pickwindow, folm = 0.6):
|
||||
'''
|
||||
@ -464,7 +474,10 @@ class SeismicShot(object):
|
||||
# raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
|
||||
|
||||
def setPick(self, traceID, pick): ########## siehe Kommentar ##########
|
||||
self.pick[traceID] = pick
|
||||
if not traceID in self.pick.keys():
|
||||
self.pick[traceID] = {}
|
||||
self.pick[traceID]['mpp'] = pick
|
||||
self.pick[traceID]['flag'] = 1
|
||||
# ++++++++++++++ Block raus genommen, da Error beim 2ten Mal picken! (Ueberschreiben von erstem Pick!)
|
||||
# if not self.pick.has_key(traceID):
|
||||
# self.getPick(traceID) = picks
|
||||
@ -475,7 +488,14 @@ class SeismicShot(object):
|
||||
# parlist = open(parfile,'r').readlines()
|
||||
|
||||
def removePick(self, traceID):
|
||||
self.setPick(traceID, None)
|
||||
self.setFlag(traceID, 0)
|
||||
|
||||
def setFlag(self, traceID, flag):
|
||||
'Set flag = 0 if pick is invalid, else flag = 1'
|
||||
self.pick[traceID]['flag'] = flag
|
||||
|
||||
def getFlag(self, traceID):
|
||||
return self.pick[traceID]['flag']
|
||||
|
||||
def setPickwindow(self, traceID, pickwindow):
|
||||
self.pickwindow[traceID] = pickwindow
|
||||
@ -580,7 +600,39 @@ class SeismicShot(object):
|
||||
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_upperb, ':k')
|
||||
|
||||
def plot_traces(self, traceID, folm = 0.6): ########## 2D, muss noch mehr verbessert werden ##########
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.widgets import Button
|
||||
|
||||
def onclick(event):
|
||||
self.setPick(traceID, event.xdata)
|
||||
self._drawStream(traceID, refresh = True)
|
||||
self._drawCFs(traceID, folm, refresh = True)
|
||||
fig.canvas.mpl_disconnect(self.traces4plot[traceID]['cid'])
|
||||
plt.draw()
|
||||
|
||||
def connectButton(event = None):
|
||||
cid = fig.canvas.mpl_connect('button_press_event', onclick)
|
||||
self.traces4plot[traceID]['cid'] = cid
|
||||
|
||||
fig = plt.figure()
|
||||
ax1 = fig.add_subplot(2,1,1)
|
||||
ax2 = fig.add_subplot(2,1,2, sharex = ax1)
|
||||
axb = fig.add_axes([0.15, 0.91, 0.05, 0.03])
|
||||
button = Button(axb, 'repick', color = 'red', hovercolor = 'grey')
|
||||
button.on_clicked(connectButton)
|
||||
|
||||
self.traces4plot = {}
|
||||
if not traceID in self.traces4plot.keys():
|
||||
self.traces4plot[traceID] = {'fig': fig,
|
||||
'ax1': ax1,
|
||||
'ax2': ax2,
|
||||
'axb': axb,
|
||||
'button': button,
|
||||
'cid': None,}
|
||||
|
||||
self._drawStream(traceID)
|
||||
self._drawCFs(traceID, folm)
|
||||
|
||||
def _drawStream(self, traceID, refresh = False):
|
||||
from pylot.core.util.utils import getGlobalTimes
|
||||
from pylot.core.util.utils import prepTimeAxis
|
||||
|
||||
@ -588,33 +640,48 @@ class SeismicShot(object):
|
||||
stime = getGlobalTimes(stream)[0]
|
||||
timeaxis = prepTimeAxis(stime, stream[0])
|
||||
timeaxis -= stime
|
||||
|
||||
ax = self.traces4plot[traceID]['ax1']
|
||||
|
||||
plt.interactive('True')
|
||||
if refresh == True:
|
||||
xlim, ylim = ax.get_xlim(), ax.get_ylim()
|
||||
ax.clear()
|
||||
if refresh == True:
|
||||
ax.set_xlim(xlim)
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.set_title('Shot: %s, traceID: %s, pick: %s'
|
||||
%(self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax.plot(timeaxis, stream[0].data, 'k', label = 'trace')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[min(stream[0].data),
|
||||
max(stream[0].data)],
|
||||
'r', label = 'mostlikely')
|
||||
ax.legend()
|
||||
|
||||
def _drawCFs(self, traceID, folm, refresh = False):
|
||||
hoscf = self.getHOScf(traceID)
|
||||
aiccf = self.getAICcf(traceID)
|
||||
ax = self.traces4plot[traceID]['ax2']
|
||||
|
||||
fig = plt.figure()
|
||||
ax1 = plt.subplot(2,1,1)
|
||||
plt.title('Shot: %s, traceID: %s, pick: %s' %(self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax1.plot(timeaxis, stream[0].data, 'k', label = 'trace')
|
||||
ax1.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[min(stream[0].data),
|
||||
max(stream[0].data)],
|
||||
'r', label = 'mostlikely')
|
||||
plt.legend()
|
||||
ax2 = plt.subplot(2,1,2, sharex = ax1)
|
||||
ax2.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label = 'HOS')
|
||||
ax2.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label = 'AIC')
|
||||
ax2.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[min(np.minimum(hoscf.getCF(), aiccf.getCF())),
|
||||
if refresh == True:
|
||||
xlim, ylim = ax.get_xlim(), ax.get_ylim()
|
||||
ax.clear()
|
||||
if refresh == True:
|
||||
ax.set_xlim(xlim)
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label = 'HOS')
|
||||
ax.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label = 'AIC')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[min(np.minimum(hoscf.getCF(), aiccf.getCF())),
|
||||
max(np.maximum(hoscf.getCF(), aiccf.getCF()))],
|
||||
'r', label = 'mostlikely')
|
||||
ax2.plot([0, self.getPick(traceID)],
|
||||
ax.plot([0, self.getPick(traceID)],
|
||||
[folm * max(hoscf.getCF()), folm * max(hoscf.getCF())],
|
||||
'm:', label = 'folm = %s' %folm)
|
||||
plt.xlabel('Time [s]')
|
||||
plt.legend()
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.legend()
|
||||
|
||||
def plot3dttc(self, step = 0.5, contour = False, plotpicks = False, method = 'linear', ax = None):
|
||||
'''
|
||||
@ -632,7 +699,6 @@ class SeismicShot(object):
|
||||
:param: method (optional), interpolation method; can be 'linear' (default) or 'cubic'
|
||||
:type: 'string'
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.interpolate import griddata
|
||||
from matplotlib import cm
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
@ -641,13 +707,13 @@ class SeismicShot(object):
|
||||
y = []
|
||||
z = []
|
||||
for traceID in self.pick.keys():
|
||||
if self.getPick(traceID) != None:
|
||||
if self.getFlag(traceID) != 0:
|
||||
x.append(self.getRecLoc(traceID)[0])
|
||||
y.append(self.getRecLoc(traceID)[1])
|
||||
z.append(self.getPick(traceID))
|
||||
|
||||
xaxis = np.arange(min(x)+1, max(x), step)
|
||||
yaxis = np.arange(min(y)+1, max(y), step)
|
||||
xaxis = np.arange(min(x), max(x), step)
|
||||
yaxis = np.arange(min(y), max(y), step)
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
|
||||
@ -671,8 +737,8 @@ class SeismicShot(object):
|
||||
plotmethod = {'2d': self.plot2dttc, '3d': self.plot3dttc}
|
||||
|
||||
plotmethod[method](*args)
|
||||
|
||||
def matshow(self, step = 0.5, method = 'linear', ax = None, plotRec = False, annotations = False):
|
||||
|
||||
def matshow(self, ax = None, step = 0.5, method = 'linear', plotRec = True, annotations = True, colorbar = True):
|
||||
'''
|
||||
Plots a 2D matrix of the interpolated traveltimes. This needs less performance than plot3dttc
|
||||
|
||||
@ -682,27 +748,32 @@ class SeismicShot(object):
|
||||
:param: method (optional), interpolation method; can be 'linear' (default) or 'cubic'
|
||||
:type: 'string'
|
||||
|
||||
:param: plotRec (optional), plot the receiver positions
|
||||
:param: plotRec (optional), plot the receiver positions (colored scatter plot, should not be
|
||||
deactivated because there might be receivers that are not inside the interpolated area)
|
||||
:type: 'logical'
|
||||
|
||||
:param: annotations (optional), displays traceIDs as annotations
|
||||
:type: 'logical'
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.interpolate import griddata
|
||||
# plt.interactive('True')
|
||||
|
||||
x = []
|
||||
y = []
|
||||
z = []
|
||||
x = []; xcut = []
|
||||
y = []; ycut = []
|
||||
z = []; zcut = []
|
||||
tmin, tmax = self.getCut()
|
||||
|
||||
for traceID in self.pick.keys():
|
||||
if self.getPick(traceID) != None:
|
||||
if self.getFlag(traceID) != 0:
|
||||
x.append(self.getRecLoc(traceID)[0])
|
||||
y.append(self.getRecLoc(traceID)[1])
|
||||
z.append(self.getPick(traceID))
|
||||
if self.getFlag(traceID) == 0 and self.getPickIncludeRemoved(traceID) is not None:
|
||||
xcut.append(self.getRecLoc(traceID)[0])
|
||||
ycut.append(self.getRecLoc(traceID)[1])
|
||||
zcut.append(self.getPickIncludeRemoved(traceID))
|
||||
|
||||
xaxis = np.arange(min(x)+1, max(x), step)
|
||||
yaxis = np.arange(min(y)+1, max(y), step)
|
||||
xaxis = np.arange(min(x), max(x), step)
|
||||
yaxis = np.arange(min(y), max(y), step)
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method='linear')
|
||||
|
||||
@ -710,14 +781,28 @@ class SeismicShot(object):
|
||||
fig = plt.figure()
|
||||
ax = plt.axes()
|
||||
|
||||
ax.imshow(zgrid, interpolation = 'none', extent = [min(x), max(x), min(y), max(y)])
|
||||
|
||||
if annotations == True:
|
||||
for i, traceID in enumerate(self.pick.keys()):
|
||||
if shot.picks[traceID] != None:
|
||||
ax.annotate('%s' % traceID, xy=(x[i], y[i]), fontsize = 'x-small')
|
||||
ax.matshow(zgrid, extent = [min(x), max(x), min(y), max(y)], origin = 'lower')
|
||||
plt.text(0.45, 0.9, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes)
|
||||
sc = ax.scatter(x, y, c = z, s = 30, label = 'picked shots', vmin = tmin, vmax = tmax, linewidths = 1.5)
|
||||
sccut = ax.scatter(xcut, ycut, c = zcut, s = 30, edgecolor = 'm', label = 'cut out shots', vmin = tmin, vmax = tmax, linewidths = 1.5)
|
||||
if colorbar == True:
|
||||
plt.colorbar(sc)
|
||||
ax.set_xlabel('X')
|
||||
ax.set_ylabel('Y')
|
||||
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1],'*k', markersize = 15) # plot source location
|
||||
|
||||
if plotRec == True:
|
||||
ax.plot(x, y, 'k.')
|
||||
ax.scatter(x, y, c = z, s = 30)
|
||||
|
||||
if annotations == True:
|
||||
for traceID in self.getTraceIDlist():
|
||||
if self.getFlag(traceID) is not 0:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
else:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'r')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -1,49 +1,191 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import numpy as np
|
||||
plt.interactive(True)
|
||||
|
||||
class regions(object):
|
||||
def __init__(self, ax, shot_dict):
|
||||
'''
|
||||
A class used for manual inspection and processing of all picks for the user.
|
||||
|
||||
Examples:
|
||||
|
||||
regions.chooseRectangles():
|
||||
- lets the user choose several rectangular regions in the plot
|
||||
|
||||
regions.plotTracesInRegions():
|
||||
- creates plots (shot.plot_traces) for all traces in the active regions (i.e. chosen by e.g. chooseRectangles)
|
||||
|
||||
regions.setActiveRegionsForDeletion():
|
||||
- highlights all shots in a the active regions for deletion
|
||||
|
||||
regions.deleteMarkedPicks():
|
||||
- deletes the picks (pick flag set to 0) for all shots set for deletion
|
||||
|
||||
regions.deselectSelection(number):
|
||||
- deselects the region of number = number
|
||||
|
||||
'''
|
||||
def __init__(self, ax, survey):
|
||||
self.ax = ax
|
||||
self.shot_dict = shot_dict
|
||||
self.survey = survey
|
||||
self.shot_dict = self.survey.getShotDict()
|
||||
self._x0 = []
|
||||
self._y0 = []
|
||||
self._x1 = []
|
||||
self._y1 = []
|
||||
self._polyx = []
|
||||
self._polyy = []
|
||||
self._allpicks = None
|
||||
self.shots_found = {}
|
||||
self.shots_for_deletion = {}
|
||||
self._generateList()
|
||||
|
||||
def _onselect(self, eclick, erelease):
|
||||
'eclick and erelease are matplotlib events at press and release' #print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata)
|
||||
#print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)'%(eclick.xdata, eclick.ydata, erelease.xdata, erelease.ydata)
|
||||
def _onselect_clicks(self, eclick, erelease):
|
||||
'eclick and erelease are matplotlib events at press and release'
|
||||
#print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata)
|
||||
#print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)'%(eclick.xdata, eclick.ydata, erelease.xdata, erelease.ydata)
|
||||
x0 = min(eclick.xdata, erelease.xdata)
|
||||
x1 = max(eclick.xdata, erelease.xdata)
|
||||
y0 = min(eclick.ydata, erelease.ydata)
|
||||
y1 = max(eclick.ydata, erelease.ydata)
|
||||
self._x0.append(x0)
|
||||
self._x1.append(x1)
|
||||
self._y0.append(y0)
|
||||
self._y1.append(y1)
|
||||
self.markCurrentRegion(x0, x1, y0, y1)
|
||||
|
||||
shots, numtraces = self.findTracesInShotDict((x0, x1), (y0, y1))
|
||||
print('Found %d traces in rectangle: %s' %(numtraces, shots))
|
||||
|
||||
key = self.getKey()
|
||||
self.shots_found[key] = {'shots': shots,
|
||||
'selection': 'rect',
|
||||
'xvalues': (x0, x1),
|
||||
'yvalues': (y0, y1)}
|
||||
self.markRectangle((x0, x1), (y0, y1), key)
|
||||
|
||||
def _onselect_verts(self, verts):
|
||||
x = verts[0][0]
|
||||
y = verts[0][1]
|
||||
self._polyx.append(x)
|
||||
self._polyy.append(y)
|
||||
|
||||
self.drawPolyLine()
|
||||
|
||||
def _onpress(self, event):
|
||||
if event.button == 3:
|
||||
self.disconnectPoly()
|
||||
|
||||
def getKey(self):
|
||||
if self.shots_found.keys() == []:
|
||||
key = 1
|
||||
else:
|
||||
key = max(self.shots_found.keys()) + 1
|
||||
return key
|
||||
|
||||
def drawPolyLine(self):
|
||||
x = self._polyx
|
||||
y = self._polyy
|
||||
if len(x) >= 2 and len(y) >= 2:
|
||||
plt.plot(x[-2:], y[-2:], 'k')
|
||||
|
||||
def drawLastPolyLine(self):
|
||||
x = self._polyx
|
||||
y = self._polyy
|
||||
if len(x) >= 2 and len(y) >= 2:
|
||||
plt.plot((x[-1], x[0]), (y[-1], y[0]), 'k')
|
||||
|
||||
def finishPolygon(self):
|
||||
self.drawLastPolyLine()
|
||||
x = self._polyx
|
||||
y = self._polyy
|
||||
self._polyx = []; self._polyy = []
|
||||
|
||||
key = self.getKey()
|
||||
self.markPolygon(x, y, key = key)
|
||||
|
||||
shots, numtraces = self.findTracesInPoly(x, y)
|
||||
self.shots_found[key] = {'shots': shots,
|
||||
'selection': 'poly',
|
||||
'xvalues': x,
|
||||
'yvalues': y}
|
||||
|
||||
print('Found %d traces in polygon: %s' %(numtraces, shots))
|
||||
|
||||
def markPolygon(self, x, y, key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
from matplotlib.patches import Polygon
|
||||
poly = Polygon(np.array(zip(x, y)), color = color, alpha = alpha, lw = linewidth)
|
||||
self.ax.add_patch(poly)
|
||||
if key is not None:
|
||||
self.ax.text((min(x) + (max(x) - min(x)) / 2), (min(y) + (max(y) - min(y)) / 2), str(key))
|
||||
self.drawFigure()
|
||||
|
||||
def disconnectPoly(self):
|
||||
self.ax.figure.canvas.mpl_disconnect(self._cid)
|
||||
del self._cid
|
||||
self.finishPolygon()
|
||||
self._lasso.disconnect_events()
|
||||
print('disconnected poly selection\n')
|
||||
|
||||
def disconnectRect(self):
|
||||
self.ax.figure.canvas.mpl_disconnect(self._cid)
|
||||
del self._cid
|
||||
self._rectangle.disconnect_events()
|
||||
print('disconnected rectangle selection\n')
|
||||
|
||||
def chooseRectangles(self):
|
||||
'''
|
||||
Activates matplotlib widget RectangleSelector.
|
||||
'''
|
||||
from matplotlib.widgets import RectangleSelector
|
||||
|
||||
print 'Select rectangle is active'
|
||||
return RectangleSelector(self.ax, self._onselect)
|
||||
print('Select rectangle is active')
|
||||
self._cid = self.ax.figure.canvas.mpl_connect('button_press_event', self._onpress)
|
||||
self._rectangle = RectangleSelector(self.ax, self._onselect_clicks)
|
||||
return self._rectangle
|
||||
|
||||
def _getx0(self):
|
||||
return self._x0
|
||||
def choosePolygon(self):
|
||||
'''
|
||||
Activates matplotlib widget LassoSelector.
|
||||
'''
|
||||
from matplotlib.widgets import LassoSelector
|
||||
|
||||
def _getx1(self):
|
||||
return self._x1
|
||||
print('Select polygon is active')
|
||||
self._cid = self.ax.figure.canvas.mpl_connect('button_press_event', self._onpress)
|
||||
self._lasso = LassoSelector(self.ax, self._onselect_verts)
|
||||
return self._lasso
|
||||
|
||||
def deselectLastSelection(self):
|
||||
if self.shots_found.keys() == []:
|
||||
print('No selection found.')
|
||||
return
|
||||
key = max(self.shots_found.keys())
|
||||
self.deselectSelection(key)
|
||||
|
||||
def _gety0(self):
|
||||
return self._y0
|
||||
def deselectSelection(self, key, color = 'green', alpha = 0.1):
|
||||
if not key in self.shots_found.keys():
|
||||
print('No selection found.')
|
||||
return
|
||||
if color is not None:
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
elif self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
value = self.shots_found.pop(key)
|
||||
print('Deselected selection number %d'% key)
|
||||
return
|
||||
|
||||
def _gety1(self):
|
||||
return self._y1
|
||||
def _generateList(self):
|
||||
allpicks = []
|
||||
for shot in self.shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
allpicks.append((shot.getDistance(traceID), shot.getPickIncludeRemoved(traceID),
|
||||
shot.getShotnumber(), traceID, shot.getFlag(traceID)))
|
||||
allpicks.sort()
|
||||
self._allpicks = allpicks
|
||||
|
||||
def getShotDict(self):
|
||||
return self.shot_dict
|
||||
@ -51,119 +193,216 @@ class regions(object):
|
||||
def getShotsForDeletion(self):
|
||||
return self.shots_for_deletion
|
||||
|
||||
def findTracesInShotDict(self, picks = 'normal'):
|
||||
'''
|
||||
Returns traces corresponding to a certain area in a plot with all picks over the distances.
|
||||
'''
|
||||
print "findTracesInShotDict: Searching for marked traces in the shot dictionary... "
|
||||
def findTracesInPoly(self, x, y, picks = 'normal', highlight = True):
|
||||
def dotproduct(v1, v2):
|
||||
return sum((a*b) for a, b in zip(v1, v2))
|
||||
|
||||
for shot in self.shot_dict.values():
|
||||
whichpicks = {'normal': shot.getPick,
|
||||
'includeCutOut': shot.getPick_backup}
|
||||
for index in range(len(self._getx1())):
|
||||
distancebin = (self._getx0()[index], self._getx1()[index])
|
||||
pickbin = (self._gety0()[index], self._gety1()[index])
|
||||
if shot.getTraceIDs4Dist(distancebin = distancebin) is not None:
|
||||
for traceID in shot.getTraceIDs4Dist(distancebin = distancebin):
|
||||
if pickbin[0] < whichpicks[picks](traceID) < pickbin[1]:
|
||||
def getlength(v):
|
||||
return math.sqrt(dotproduct(v, v))
|
||||
|
||||
def getangle(v1, v2):
|
||||
return np.rad2deg(math.acos(dotproduct(v1, v2) / (getlength(v1) * getlength(v2))))
|
||||
|
||||
def insidePoly(x, y, pickX, pickY):
|
||||
angle = 0
|
||||
epsilon = 10e-8
|
||||
for index in range(len(x)):
|
||||
xval1 = x[index - 1]; yval1 = y[index - 1]
|
||||
xval2 = x[index]; yval2 = y[index]
|
||||
angle += getangle([xval1 - pickX, yval1 - pickY], [xval2 - pickX, yval2 - pickY])
|
||||
if 360 - epsilon <= angle <= 360 + epsilon: ### IMPROVE THAT??
|
||||
return True
|
||||
|
||||
if len(x) == 0 or len(y) == 0:
|
||||
print('No polygon defined.')
|
||||
return
|
||||
|
||||
shots_found = {}; numtraces = 0
|
||||
x0 = min(x); x1 = max(x)
|
||||
y0 = min(y); y1 = max(y)
|
||||
|
||||
shots, numtracesrect = self.findTracesInShotDict((x0, x1), (y0, y1), highlight = False)
|
||||
for shotnumber in shots.keys():
|
||||
shot = self.shot_dict[shotnumber]
|
||||
for traceID in shots[shotnumber]:
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
pickX = shot.getDistance(traceID)
|
||||
pickY = shot.getPick(traceID)
|
||||
if insidePoly(x, y, pickX, pickY):
|
||||
if not shotnumber in shots_found.keys():
|
||||
shots_found[shotnumber] = []
|
||||
shots_found[shotnumber].append(traceID)
|
||||
if highlight == True:
|
||||
self.highlightPick(shot, traceID)
|
||||
if shot.getShotnumber() not in self.shots_found.keys():
|
||||
self.shots_found[shot.getShotnumber()] = []
|
||||
if traceID not in self.shots_found[shot.getShotnumber()]:
|
||||
self.shots_found[shot.getShotnumber()].append(traceID)
|
||||
self.refreshFigure()
|
||||
print self.shots_found
|
||||
numtraces += 1
|
||||
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def findTracesInShotDict(self, (x0, x1), (y0, y1), picks = 'normal', highlight = True):
|
||||
'''
|
||||
Returns traces corresponding to a certain area in the plot with all picks over the distances.
|
||||
'''
|
||||
shots_found = {}; numtraces = 0
|
||||
if picks == 'normal': pickflag = 0
|
||||
elif picks == 'includeCutOut': pickflag = None
|
||||
|
||||
for line in self._allpicks:
|
||||
dist, pick, shotnumber, traceID, flag = line
|
||||
if flag == pickflag: continue ### IMPROVE THAT
|
||||
if (x0 <= dist <= x1 and y0 <= pick <= y1):
|
||||
if not shotnumber in shots_found.keys():
|
||||
shots_found[shotnumber] = []
|
||||
shots_found[shotnumber].append(traceID)
|
||||
if highlight == True:
|
||||
self.highlightPick(self.shot_dict[shotnumber], traceID)
|
||||
numtraces += 1
|
||||
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def highlightPick(self, shot, traceID, annotations = True):
|
||||
'''
|
||||
Highlights a single pick for a shot(object)/shotnumber and traceID.
|
||||
If annotations == True: Displays shotnumber and traceID in the plot.
|
||||
'''
|
||||
if type(shot) == int:
|
||||
shot = self.survey.getShotDict()[shot]
|
||||
|
||||
self.ax.scatter(shot.getDistance(traceID), shot.getPick(traceID), s = 50, marker = 'o', facecolors = 'none', edgecolors = 'm', alpha = 1)
|
||||
if annotations == True:
|
||||
self.ax.annotate(s = 's%s|t%s'%(shot.getShotnumber(), traceID), xy = (shot.getDistance(traceID), shot.getPick(traceID)), fontsize = 'xx-small')
|
||||
self.ax.set_ylim(shot.getCut())
|
||||
|
||||
def plotTracesInRegion(self):
|
||||
def highlightAllRegions(self):
|
||||
'''
|
||||
Highlights all picks in all active regions.
|
||||
'''
|
||||
for key in self.shots_found.keys():
|
||||
for shotnumber in self.shots_found[key]['shots'].keys():
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
self.highlightPick(self.shot_dict[shotnumber], traceID)
|
||||
self.drawFigure()
|
||||
|
||||
def plotTracesInRegions(self, keys = 'all', maxfigures = 20):
|
||||
'''
|
||||
Plots all traces in the active region or for all specified keys.
|
||||
|
||||
:param: keys
|
||||
:type: int or list
|
||||
|
||||
:param: maxfigures, maximum value of figures opened
|
||||
:type: int
|
||||
'''
|
||||
count = 0
|
||||
maxfigures = 20
|
||||
# if len(self.shots_found) == 0:
|
||||
self.findTracesInShotDict()
|
||||
if keys == 'all':
|
||||
keys = self.shots_found.keys()
|
||||
elif type(keys) == int:
|
||||
keys = [keys]
|
||||
|
||||
if len(self.shots_found) > 0:
|
||||
for shot in self.shot_dict.values():
|
||||
for shotnumber in self.shots_found:
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.shots_found[shotnumber]:
|
||||
count += 1
|
||||
if count > maxfigures:
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' %(maxfigures, count)
|
||||
break
|
||||
shot.plot_traces(traceID)
|
||||
for key in keys:
|
||||
for shotnumber in self.shots_found[key]['shots']:
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
count += 1
|
||||
if count > maxfigures:
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' %(maxfigures, count)
|
||||
break
|
||||
shot.plot_traces(traceID)
|
||||
else:
|
||||
print 'No picks yet defined in the regions x = (%s, %s), y = (%s, %s)' %(self._x0, self._x1, self._y0, self._y1)
|
||||
print('No picks defined in that region(s)')
|
||||
|
||||
def plotTracesInRegion_withCutOutTraces(self):
|
||||
count = 0
|
||||
maxfigures = 20
|
||||
# if len(self.shots_found) == 0:
|
||||
self.findTracesInShotDict(picks = 'includeCutOut')
|
||||
def setActiveRegionsForDeletion(self):
|
||||
keys = []
|
||||
for key in self.shots_found.keys():
|
||||
keys.append(key)
|
||||
self.setRegionForDeletion(keys)
|
||||
|
||||
if len(self.shots_found) > 0:
|
||||
for shot in self.shot_dict.values():
|
||||
for shotnumber in self.shots_found:
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.shots_found[shotnumber]:
|
||||
count += 1
|
||||
if count > maxfigures:
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' %(maxfigures, count)
|
||||
break
|
||||
shot.plot_traces(traceID)
|
||||
else:
|
||||
print 'No picks yet defined in the regions x = (%s, %s), y = (%s, %s)' %(self._x0, self._x1, self._y0, self._y1)
|
||||
def setRegionForDeletion(self, keys):
|
||||
if type(keys) == int:
|
||||
keys = [keys]
|
||||
|
||||
for key in keys:
|
||||
for shotnumber in self.shots_found[key]['shots'].keys():
|
||||
if not shotnumber in self.shots_for_deletion:
|
||||
self.shots_for_deletion[shotnumber] = []
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
if not traceID in self.shots_for_deletion[shotnumber]:
|
||||
self.shots_for_deletion[shotnumber].append(traceID)
|
||||
self.deselectSelection(key, color = 'red', alpha = 0.2)
|
||||
|
||||
def setCurrentRegionsForDeletion(self):
|
||||
# if len(self.shots_found) == 0:
|
||||
self.findTracesInShotDict()
|
||||
print 'Set region(s) %s for deletion'%keys
|
||||
|
||||
for shotnumber in self.shots_found:
|
||||
if not shotnumber in self.shots_for_deletion:
|
||||
self.shots_for_deletion[shotnumber] = []
|
||||
for traceID in self.shots_found[shotnumber]:
|
||||
if not traceID in self.shots_for_deletion[shotnumber]:
|
||||
self.shots_for_deletion[shotnumber].append(traceID)
|
||||
self.markAllRegions(color = 'red')
|
||||
print 'Marked regions for deletion'
|
||||
def markAllActiveRegions(self):
|
||||
for key in self.shots_found.keys():
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
if self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
|
||||
|
||||
def markAllRegions(self, color = 'grey'):
|
||||
def markRectangle(self, (x0, x1), (y0, y1), key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
'''
|
||||
Mark a rectangular region on the axes.
|
||||
'''
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
for index in range(len(self._getx0())):
|
||||
x0 = self._getx0()[index]
|
||||
y0 = self._gety0()[index]
|
||||
x1 = self._getx1()[index]
|
||||
y1 = self._gety1()[index]
|
||||
self.ax.add_patch(Rectangle((x0, y0), (x1 - x0), (y1 - y0),
|
||||
alpha = alpha, facecolor = color, linewidth = linewidth))
|
||||
if key is not None:
|
||||
self.ax.text((x0 + (x1 - x0) / 2), (y0 + (y1 - y0) / 2), str(key))
|
||||
self.drawFigure()
|
||||
|
||||
self.ax.add_patch(Rectangle((x0, y0), (x1 - x0), (y1 - y0), alpha=0.5, facecolor = color))
|
||||
self.refreshFigure()
|
||||
def refreshFigure(self):
|
||||
print('Refreshing figure...')
|
||||
self.ax.clear()
|
||||
self.ax = self.survey.plotAllPicks(ax = self.ax, refreshPlot = True)
|
||||
self.markAllActiveRegions()
|
||||
self.drawFigure()
|
||||
print('Done!')
|
||||
|
||||
def markCurrentRegion(self, x0, x1, y0, y1, color = 'grey'):
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
self.ax.add_patch(Rectangle((x0, y0), (x1 - x0), (y1 - y0), alpha=0.1, facecolor = color))
|
||||
self.refreshFigure()
|
||||
def clearShotsForDeletion(self):
|
||||
'''
|
||||
Clears the list of shots marked for deletion.
|
||||
'''
|
||||
self.shots_for_deletion = {}
|
||||
print('Cleared all shots that were set for deletion.')
|
||||
|
||||
def getShotsForDeletion(self):
|
||||
return self.shots_for_deletion
|
||||
|
||||
def deleteMarkedPicks(self):
|
||||
'''
|
||||
Deletes all shots set for deletion.
|
||||
'''
|
||||
if len(self.getShotsForDeletion()) is 0:
|
||||
print('No shots set for deletion.')
|
||||
return
|
||||
|
||||
for shot in self.getShotDict().values():
|
||||
for shotnumber in self.getShotsForDeletion():
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.getShotsForDeletion()[shotnumber]:
|
||||
shot.removePick(traceID)
|
||||
print "Deleted the pick for traceID %s on shot number %s" %(traceID, shotnumber)
|
||||
self.shots_for_deletion = {} # clear dictionary
|
||||
|
||||
def highlightPicksForShot(self, shot, annotations = False):
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getPick(traceID) is not None:
|
||||
self.highlightPick(shot, traceID, annotations)
|
||||
self.clearShotsForDeletion()
|
||||
self.refreshFigure()
|
||||
|
||||
def refreshFigure(self):
|
||||
def highlightPicksForShot(self, shot, annotations = False):
|
||||
'''
|
||||
Highlight all picks for a given shot.
|
||||
'''
|
||||
if type(shot) is int:
|
||||
shot = self.survey.getShotDict()[shotnumber]
|
||||
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getFlag(traceID) is not 0:
|
||||
self.highlightPick(shot, traceID, annotations)
|
||||
self.drawFigure()
|
||||
|
||||
def drawFigure(self):
|
||||
plt.draw()
|
||||
|
@ -73,7 +73,7 @@ def fitSNR4dist(shot_dict, shiftdist = 5):
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getSNR(traceID)[0] >= 1:
|
||||
dists.append(shot.getDistance(traceID))
|
||||
picks.append(shot.getPick_backup(traceID))
|
||||
picks.append(shot.getPickIncludeRemoved(traceID))
|
||||
snrs.append(shot.getSNR(traceID)[0])
|
||||
snr_sqrt_inv.append(1/np.sqrt(shot.getSNR(traceID)[0]))
|
||||
fit = np.polyfit(dists, snr_sqrt_inv, 1)
|
||||
|
@ -25,7 +25,7 @@ class CharacteristicFunction(object):
|
||||
'''
|
||||
SuperClass for different types of characteristic functions.
|
||||
'''
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None, stealthMode=False):
|
||||
'''
|
||||
Initialize data type object with information from the original
|
||||
Seismogram.
|
||||
@ -62,6 +62,7 @@ class CharacteristicFunction(object):
|
||||
self.calcCF(self.getDataArray())
|
||||
self.arpara = np.array([])
|
||||
self.xpred = np.array([])
|
||||
self._stealthMode = stealthMode
|
||||
|
||||
def __str__(self):
|
||||
return '''\n\t{name} object:\n
|
||||
@ -135,6 +136,9 @@ class CharacteristicFunction(object):
|
||||
def getXCF(self):
|
||||
return self.xcf
|
||||
|
||||
def _getStealthMode(self):
|
||||
return self._stealthMode()
|
||||
|
||||
def getDataArray(self, cut=None):
|
||||
'''
|
||||
If cut times are given, time series is cut from cut[0] (start time)
|
||||
@ -219,7 +223,8 @@ class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
#print 'Calculating AIC ...' ## MP MP output suppressed
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating AIC ...'
|
||||
x = self.getDataArray()
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
@ -257,11 +262,13 @@ class HOScf(CharacteristicFunction):
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
print 'Calculating skewness ...'
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
#print 'Calculating kurtosis ...' ## MP MP output suppressed
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating kurtosis ...'
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
|
@ -15,7 +15,7 @@ from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
@ -44,7 +44,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
LPick = None
|
||||
EPick = None
|
||||
PickError = None
|
||||
#print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
if stealthMode is False:
|
||||
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
@ -75,8 +76,9 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
# if EPick stays NaN the signal window size will be doubled
|
||||
while np.isnan(EPick):
|
||||
if count > 0:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
if stealthMode is False:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
isigDoubleWinStart = pis[-1] + 1
|
||||
isignalDoubleWin = np.arange(isigDoubleWinStart,
|
||||
isigDoubleWinStart + len(pis))
|
||||
|
Loading…
Reference in New Issue
Block a user