Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop
This commit is contained in:
@@ -25,7 +25,7 @@ class CharacteristicFunction(object):
|
||||
'''
|
||||
SuperClass for different types of characteristic functions.
|
||||
'''
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None, stealthMode=False):
|
||||
'''
|
||||
Initialize data type object with information from the original
|
||||
Seismogram.
|
||||
@@ -62,6 +62,7 @@ class CharacteristicFunction(object):
|
||||
self.calcCF(self.getDataArray())
|
||||
self.arpara = np.array([])
|
||||
self.xpred = np.array([])
|
||||
self._stealthMode = stealthMode
|
||||
|
||||
def __str__(self):
|
||||
return '''\n\t{name} object:\n
|
||||
@@ -135,6 +136,9 @@ class CharacteristicFunction(object):
|
||||
def getXCF(self):
|
||||
return self.xcf
|
||||
|
||||
def _getStealthMode(self):
|
||||
return self._stealthMode()
|
||||
|
||||
def getDataArray(self, cut=None):
|
||||
'''
|
||||
If cut times are given, time series is cut from cut[0] (start time)
|
||||
@@ -219,7 +223,8 @@ class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
#print 'Calculating AIC ...' ## MP MP output suppressed
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating AIC ...'
|
||||
x = self.getDataArray()
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
@@ -257,11 +262,13 @@ class HOScf(CharacteristicFunction):
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
print 'Calculating skewness ...'
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
#print 'Calculating kurtosis ...' ## MP MP output suppressed
|
||||
#if self._getStealthMode() is False:
|
||||
# print 'Calculating kurtosis ...'
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
@@ -44,7 +44,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
LPick = None
|
||||
EPick = None
|
||||
PickError = None
|
||||
#print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
if stealthMode is False:
|
||||
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
@@ -75,8 +76,9 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
# if EPick stays NaN the signal window size will be doubled
|
||||
while np.isnan(EPick):
|
||||
if count > 0:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
if stealthMode is False:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
isigDoubleWinStart = pis[-1] + 1
|
||||
isignalDoubleWin = np.arange(isigDoubleWinStart,
|
||||
isigDoubleWinStart + len(pis))
|
||||
|
||||
Reference in New Issue
Block a user