merged 3 files
Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop Conflicts: pylot/core/active/activeSeismoPick.py pylot/core/active/seismicshot.py pylot/core/active/surveyPlotTools.py
This commit is contained in:
		
						commit
						195352a7ca
					
				@ -8,11 +8,11 @@ import glob
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
from obspy.core import read
 | 
			
		||||
from pylot.core.util import _getVersionString
 | 
			
		||||
from pylot.core.read.data import Data
 | 
			
		||||
from pylot.core.read.inputs import AutoPickParameter
 | 
			
		||||
from pylot.core.util.structure import DATASTRUCTURE
 | 
			
		||||
from pylot.core.pick.autopick import autopickevent
 | 
			
		||||
from pylot.core.util.version import get_git_version as _getVersionString
 | 
			
		||||
 | 
			
		||||
__version__ = _getVersionString()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,10 +1,10 @@
 | 
			
		||||
<RCC>
 | 
			
		||||
    <qresource>
 | 
			
		||||
		<file>icons/pylot.ico</file>
 | 
			
		||||
		<file>icons/pylot.png</file>
 | 
			
		||||
        <file>icons/pylot.ico</file>
 | 
			
		||||
        <file>icons/pylot.png</file>
 | 
			
		||||
        <file>icons/printer.png</file>
 | 
			
		||||
        <file>icons/delete.png</file>
 | 
			
		||||
		<file>icons/key_E.png</file>
 | 
			
		||||
        <file>icons/key_E.png</file>
 | 
			
		||||
        <file>icons/key_N.png</file>
 | 
			
		||||
        <file>icons/key_P.png</file>
 | 
			
		||||
        <file>icons/key_Q.png</file>
 | 
			
		||||
@ -14,7 +14,7 @@
 | 
			
		||||
        <file>icons/key_U.png</file>
 | 
			
		||||
        <file>icons/key_V.png</file>
 | 
			
		||||
        <file>icons/key_W.png</file>
 | 
			
		||||
		<file>icons/key_Z.png</file>
 | 
			
		||||
        <file>icons/key_Z.png</file>
 | 
			
		||||
        <file>icons/filter.png</file>
 | 
			
		||||
        <file>icons/sync.png</file>
 | 
			
		||||
        <file>icons/zoom_0.png</file>
 | 
			
		||||
 | 
			
		||||
@ -0,0 +1 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
@ -1 +1,2 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
__author__ = 'sebastianw'
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import sys
 | 
			
		||||
import numpy as np
 | 
			
		||||
from pylot.core.active import seismicshot
 | 
			
		||||
@ -14,7 +15,7 @@ class Survey(object):
 | 
			
		||||
        self._sourcefile = sourcefile
 | 
			
		||||
        self._obsdir = path
 | 
			
		||||
        self._generateSurvey()
 | 
			
		||||
        if useDefaultParas == True: 
 | 
			
		||||
        if useDefaultParas == True:
 | 
			
		||||
            self.setParametersForShots()
 | 
			
		||||
        self._removeAllEmptyTraces()
 | 
			
		||||
        self._updateShots()
 | 
			
		||||
@ -72,7 +73,7 @@ class Survey(object):
 | 
			
		||||
            if removed is not None:
 | 
			
		||||
                if count == 0: outfile = open(filename, 'w')
 | 
			
		||||
                count += 1
 | 
			
		||||
                outfile.writelines('shot: %s, removed empty traces: %s\n' 
 | 
			
		||||
                outfile.writelines('shot: %s, removed empty traces: %s\n'
 | 
			
		||||
                                   %(shot.getShotnumber(), removed))
 | 
			
		||||
        print ("\nremoveEmptyTraces: Finished! Removed %d traces" %count)
 | 
			
		||||
        if count > 0:
 | 
			
		||||
@ -90,7 +91,7 @@ class Survey(object):
 | 
			
		||||
                count += 1
 | 
			
		||||
                countTraces += len(del_traceIDs)
 | 
			
		||||
                outfile.writelines("shot: %s, removed traceID(s) %s because "
 | 
			
		||||
                                   "they were not found in the corresponding stream\n" 
 | 
			
		||||
                                   "they were not found in the corresponding stream\n"
 | 
			
		||||
                                   %(shot.getShotnumber(), del_traceIDs))
 | 
			
		||||
 | 
			
		||||
        print ("\nupdateShots: Finished! Updated %d shots and removed "
 | 
			
		||||
@ -166,8 +167,8 @@ class Survey(object):
 | 
			
		||||
 | 
			
		||||
    def countAllTraces(self):
 | 
			
		||||
        numtraces = 0
 | 
			
		||||
        for line in self.getShotlist():
 | 
			
		||||
            for line in self.getReceiverlist():
 | 
			
		||||
        for shot in self.getShotlist():
 | 
			
		||||
            for rec in self.getReceiverlist():
 | 
			
		||||
                numtraces += 1
 | 
			
		||||
        return numtraces
 | 
			
		||||
 | 
			
		||||
@ -202,7 +203,7 @@ class Survey(object):
 | 
			
		||||
 | 
			
		||||
    def getReceiverfile(self):
 | 
			
		||||
        return self._recfile
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    def getPath(self):
 | 
			
		||||
        return self._obsdir
 | 
			
		||||
 | 
			
		||||
@ -250,7 +251,7 @@ class Survey(object):
 | 
			
		||||
            (x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
 | 
			
		||||
            srcfile.writelines('%10s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z)) # lat, lon, depth
 | 
			
		||||
            LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
 | 
			
		||||
            srcfile.writelines('%10s\n' %1) # 
 | 
			
		||||
            srcfile.writelines('%10s\n' %1) #
 | 
			
		||||
            srcfile.writelines('%10s %10s %10s\n' %(1, 1, ttfilename))
 | 
			
		||||
            ttfile = open(directory + '/' + ttfilename, 'w')
 | 
			
		||||
            traceIDlist = shot.getTraceIDlist()
 | 
			
		||||
@ -265,7 +266,7 @@ class Survey(object):
 | 
			
		||||
                    LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
 | 
			
		||||
                    count += 1
 | 
			
		||||
            ttfile.close()
 | 
			
		||||
        srcfile.close()       
 | 
			
		||||
        srcfile.close()
 | 
			
		||||
        print 'Wrote output for %s traces' %count
 | 
			
		||||
        print 'WARNING: output generated for FMTOMO-obsdata. Obsdata seems to take Lat, Lon, Depth and creates output for FMTOMO as Depth, Lat, Lon'
 | 
			
		||||
        print 'Dimensions of the seismic Array, transformed for FMTOMO, are Depth(%s, %s), Lat(%s, %s), Lon(%s, %s)'%(
 | 
			
		||||
@ -410,7 +411,7 @@ class Survey(object):
 | 
			
		||||
        return ax
 | 
			
		||||
 | 
			
		||||
    def _update_progress(self, shotname, tend, progress):
 | 
			
		||||
        sys.stdout.write("Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r" 
 | 
			
		||||
        sys.stdout.write("Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r"
 | 
			
		||||
                         %(shotname, tend.hour, tend.minute, tend.second, progress))
 | 
			
		||||
        sys.stdout.flush()
 | 
			
		||||
 | 
			
		||||
@ -420,8 +421,8 @@ class Survey(object):
 | 
			
		||||
 | 
			
		||||
        cPickle.dump(self, outfile, -1)
 | 
			
		||||
        print('saved Survey to file %s'%(filename))
 | 
			
		||||
        
 | 
			
		||||
    @staticmethod    
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def from_pickle(filename):
 | 
			
		||||
        import cPickle
 | 
			
		||||
        infile = open(filename, 'rb')
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
 | 
			
		||||
@ -73,7 +74,7 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
 | 
			
		||||
 | 
			
		||||
    dX = getDistance(np.rad2deg(dPhi))
 | 
			
		||||
    dY = getDistance(np.rad2deg(dTheta))
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    nPoints = nX * nY * nZ
 | 
			
		||||
 | 
			
		||||
    dZ = dR
 | 
			
		||||
@ -114,7 +115,7 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
 | 
			
		||||
        R = 6371.
 | 
			
		||||
        distance = angle / 180 * (PI * R)
 | 
			
		||||
        return distance
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    infile = open(fnin, 'r')
 | 
			
		||||
    R = 6371
 | 
			
		||||
    rays = {}
 | 
			
		||||
@ -124,7 +125,7 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
 | 
			
		||||
    ### NOTE: rays.dat seems to be in km and radians
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
        raynumber += 1 
 | 
			
		||||
        raynumber += 1
 | 
			
		||||
        firstline = infile.readline()
 | 
			
		||||
        if firstline == '': break # break at EOF
 | 
			
		||||
        raynumber = int(firstline.split()[0])
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import sys
 | 
			
		||||
from obspy import read
 | 
			
		||||
from obspy import Stream
 | 
			
		||||
@ -28,7 +29,7 @@ if rockeskyll == True:
 | 
			
		||||
    obsdir = "/rscratch/minos22/marcel/flachseismik/rockeskyll_200615_270615/"
 | 
			
		||||
    filename = 'survey_rockes.pickle'
 | 
			
		||||
else:
 | 
			
		||||
    receiverfile = "Geophone_interpoliert_GZB" 
 | 
			
		||||
    receiverfile = "Geophone_interpoliert_GZB"
 | 
			
		||||
    sourcefile = "Schusspunkte_GZB"
 | 
			
		||||
    obsdir = "/rscratch/minos22/marcel/flachseismik/GZB_26_06_15_01/"
 | 
			
		||||
    filename = 'survey_GZB.pickle'
 | 
			
		||||
@ -85,9 +86,9 @@ for shot in survey.data.values():
 | 
			
		||||
        shot.setPickwindow(traceID, pickwin_used)
 | 
			
		||||
        shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
 | 
			
		||||
        #shot.setManualPicks(traceID, picklist) # set manual picks if given (yet used on 2D only)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # ++ TEST: set and check SNR before adding to distance bin ############################
 | 
			
		||||
        shot.setSNR(traceID)    
 | 
			
		||||
        shot.setSNR(traceID)
 | 
			
		||||
        #if shot.getSNR(traceID)[0] < snrthreshold:
 | 
			
		||||
        if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
 | 
			
		||||
                shot.removePick(traceID)
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import sys
 | 
			
		||||
import numpy as np
 | 
			
		||||
from scipy.interpolate import griddata
 | 
			
		||||
@ -28,12 +29,12 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
    def _generateReceiverlines(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Connects the traceIDs to the lineIDs 
 | 
			
		||||
        Connects the traceIDs to the lineIDs
 | 
			
		||||
        for each receiverline in a dictionary.
 | 
			
		||||
        '''
 | 
			
		||||
        for receiver in self._receiverlist:
 | 
			
		||||
            traceID = int(receiver.split()[0]) 
 | 
			
		||||
            lineID =  int(receiver.split()[1]) 
 | 
			
		||||
            traceID = int(receiver.split()[0])
 | 
			
		||||
            lineID =  int(receiver.split()[1])
 | 
			
		||||
            if not lineID in self._receiverlines.keys():
 | 
			
		||||
                self._receiverlines[lineID] = []
 | 
			
		||||
            self._receiverlines[lineID].append(traceID)
 | 
			
		||||
@ -43,16 +44,16 @@ class SeisArray(object):
 | 
			
		||||
        Fills the three x, y, z dictionaries with measured coordinates
 | 
			
		||||
        '''
 | 
			
		||||
        for line in self._getReceiverlist():
 | 
			
		||||
            traceID = int(line.split()[0]) 
 | 
			
		||||
            x = float(line.split()[3]) 
 | 
			
		||||
            y = float(line.split()[4]) 
 | 
			
		||||
            z = float(line.split()[5]) 
 | 
			
		||||
            traceID = int(line.split()[0])
 | 
			
		||||
            x = float(line.split()[3])
 | 
			
		||||
            y = float(line.split()[4])
 | 
			
		||||
            z = float(line.split()[5])
 | 
			
		||||
            self._receiverCoords[traceID] = (x, y, z)
 | 
			
		||||
            self._measuredReceivers[traceID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def _setGeophoneNumbers(self):
 | 
			
		||||
        for line in self._getReceiverlist():
 | 
			
		||||
            traceID = int(line.split()[0]) 
 | 
			
		||||
            traceID = int(line.split()[0])
 | 
			
		||||
            gphoneNum = float(line.split()[2])
 | 
			
		||||
            self._geophoneNumbers[traceID] = gphoneNum
 | 
			
		||||
 | 
			
		||||
@ -93,7 +94,7 @@ class SeisArray(object):
 | 
			
		||||
        return self._geophoneNumbers[traceID]
 | 
			
		||||
 | 
			
		||||
    def getMeasuredReceivers(self):
 | 
			
		||||
        return self._measuredReceivers 
 | 
			
		||||
        return self._measuredReceivers
 | 
			
		||||
 | 
			
		||||
    def getMeasuredTopo(self):
 | 
			
		||||
        return self._measuredTopo
 | 
			
		||||
@ -139,11 +140,11 @@ class SeisArray(object):
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) < self._getReceiverValue(traceID2, coordinate):
 | 
			
		||||
            direction = +1
 | 
			
		||||
            return direction
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate): 
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
 | 
			
		||||
            direction = -1
 | 
			
		||||
            return direction
 | 
			
		||||
        print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
 | 
			
		||||
                        
 | 
			
		||||
 | 
			
		||||
    def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the mean distance between two traceID's depending on the number of geophones in between
 | 
			
		||||
@ -186,7 +187,7 @@ class SeisArray(object):
 | 
			
		||||
            x = float(line[1])
 | 
			
		||||
            y = float(line[2])
 | 
			
		||||
            z = float(line[3])
 | 
			
		||||
            self._measuredTopo[pointID] = (x, y, z)        
 | 
			
		||||
            self._measuredTopo[pointID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def addSourceLocations(self, filename):
 | 
			
		||||
        '''
 | 
			
		||||
@ -202,7 +203,7 @@ class SeisArray(object):
 | 
			
		||||
            x = float(line[1])
 | 
			
		||||
            y = float(line[2])
 | 
			
		||||
            z = float(line[3])
 | 
			
		||||
            self._sourceLocs[pointID] = (x, y, z)        
 | 
			
		||||
            self._sourceLocs[pointID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def interpZcoords4rec(self, method = 'linear'):
 | 
			
		||||
        '''
 | 
			
		||||
@ -239,9 +240,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for traceID in self.getMeasuredReceivers().keys():
 | 
			
		||||
            x.append(self.getMeasuredReceivers()[traceID][0])        
 | 
			
		||||
            x.append(self.getMeasuredReceivers()[traceID][0])
 | 
			
		||||
            y.append(self.getMeasuredReceivers()[traceID][1])
 | 
			
		||||
            z.append(self.getMeasuredReceivers()[traceID][2])        
 | 
			
		||||
            z.append(self.getMeasuredReceivers()[traceID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getMeasuredTopoLists(self):
 | 
			
		||||
@ -250,9 +251,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for pointID in self.getMeasuredTopo().keys():
 | 
			
		||||
            x.append(self.getMeasuredTopo()[pointID][0])        
 | 
			
		||||
            x.append(self.getMeasuredTopo()[pointID][0])
 | 
			
		||||
            y.append(self.getMeasuredTopo()[pointID][1])
 | 
			
		||||
            z.append(self.getMeasuredTopo()[pointID][2])        
 | 
			
		||||
            z.append(self.getMeasuredTopo()[pointID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getSourceLocsLists(self):
 | 
			
		||||
@ -261,9 +262,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for pointID in self.getSourceLocations().keys():
 | 
			
		||||
            x.append(self.getSourceLocations()[pointID][0])        
 | 
			
		||||
            x.append(self.getSourceLocations()[pointID][0])
 | 
			
		||||
            y.append(self.getSourceLocations()[pointID][1])
 | 
			
		||||
            z.append(self.getSourceLocations()[pointID][2])        
 | 
			
		||||
            z.append(self.getSourceLocations()[pointID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getAllMeasuredPointsLists(self):
 | 
			
		||||
@ -289,7 +290,7 @@ class SeisArray(object):
 | 
			
		||||
            y.append(self.getReceiverCoordinates()[traceID][1])
 | 
			
		||||
            z.append(self.getReceiverCoordinates()[traceID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
    def _interpolateXY4rec(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Interpolates the X and Y coordinates for all receivers.
 | 
			
		||||
@ -317,7 +318,7 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
        :param: phiWE (W, E) extensions of the model in degree
 | 
			
		||||
        type: tuple
 | 
			
		||||
        '''                                       
 | 
			
		||||
        '''
 | 
			
		||||
 | 
			
		||||
        surface = []
 | 
			
		||||
        elevation = 0.25 # elevate topography so that no source lies above the surface
 | 
			
		||||
@ -356,9 +357,9 @@ class SeisArray(object):
 | 
			
		||||
                progress = float(count) / float(nTotal) * 100
 | 
			
		||||
                self._update_progress(progress)
 | 
			
		||||
 | 
			
		||||
                if filename is not None: 
 | 
			
		||||
                if filename is not None:
 | 
			
		||||
                    outfile.writelines('%10s\n'%(z + elevation))
 | 
			
		||||
                
 | 
			
		||||
 | 
			
		||||
        return surface
 | 
			
		||||
 | 
			
		||||
    def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
 | 
			
		||||
@ -415,7 +416,7 @@ class SeisArray(object):
 | 
			
		||||
        thetaDelta = abs(thetaN - thetaS) / (nTheta - 1)
 | 
			
		||||
        phiDelta = abs(phiE - phiW) / (nPhi - 1)
 | 
			
		||||
        rDelta = abs(rbot - rtop) / (nR - 1)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # create a regular grid including +2 cushion nodes in every direction
 | 
			
		||||
        thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
 | 
			
		||||
        phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
 | 
			
		||||
@ -455,7 +456,7 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
                    progress = float(count) / float(nTotal) * 100
 | 
			
		||||
                    self._update_progress(progress)
 | 
			
		||||
                    
 | 
			
		||||
 | 
			
		||||
        outfile.close()
 | 
			
		||||
 | 
			
		||||
    def exportAll(self, filename = 'interpolated_receivers.out'):
 | 
			
		||||
@ -463,7 +464,7 @@ class SeisArray(object):
 | 
			
		||||
        count = 0
 | 
			
		||||
        for traceID in self.getReceiverCoordinates().keys():
 | 
			
		||||
            count += 1
 | 
			
		||||
            x, y, z = self.getReceiverCoordinates()[traceID] 
 | 
			
		||||
            x, y, z = self.getReceiverCoordinates()[traceID]
 | 
			
		||||
            recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
 | 
			
		||||
        print "Exported coordinates for %s traces to file > %s" %(count, filename)
 | 
			
		||||
        recfile_out.close()
 | 
			
		||||
@ -472,15 +473,15 @@ class SeisArray(object):
 | 
			
		||||
        import matplotlib.pyplot as plt
 | 
			
		||||
        plt.interactive(True)
 | 
			
		||||
        plt.figure()
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists() 
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists()
 | 
			
		||||
        xsc, ysc, zsc = self.getSourceLocsLists()
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists() 
 | 
			
		||||
        xrc, yrc, zrc = self.getReceiverLists() 
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists()
 | 
			
		||||
        xrc, yrc, zrc = self.getReceiverLists()
 | 
			
		||||
 | 
			
		||||
        plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers')
 | 
			
		||||
        plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations')
 | 
			
		||||
 | 
			
		||||
        if plot_topo == True: 
 | 
			
		||||
        if plot_topo == True:
 | 
			
		||||
            plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points')
 | 
			
		||||
        if highlight_measured == True:
 | 
			
		||||
            plt.plot(xmr, ymr, 'ro', label = 'measured receivers')
 | 
			
		||||
@ -505,9 +506,9 @@ class SeisArray(object):
 | 
			
		||||
            fig = plt.figure()
 | 
			
		||||
            ax = plt.axes(projection = '3d')
 | 
			
		||||
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists() 
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists() 
 | 
			
		||||
        xin, yin, zin = self.getReceiverLists() 
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists()
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists()
 | 
			
		||||
        xin, yin, zin = self.getReceiverLists()
 | 
			
		||||
 | 
			
		||||
        ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points')
 | 
			
		||||
        ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers')
 | 
			
		||||
@ -516,8 +517,8 @@ class SeisArray(object):
 | 
			
		||||
        ax.legend()
 | 
			
		||||
 | 
			
		||||
        return ax
 | 
			
		||||
            
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'):
 | 
			
		||||
        from matplotlib import cm
 | 
			
		||||
        import matplotlib.pyplot as plt
 | 
			
		||||
@ -661,8 +662,8 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
        cPickle.dump(self, outfile, -1)
 | 
			
		||||
        print('saved SeisArray to file %s'%(filename))
 | 
			
		||||
        
 | 
			
		||||
    @staticmethod    
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def from_pickle(filename):
 | 
			
		||||
        import cPickle
 | 
			
		||||
        infile = open(filename, 'rb')
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import sys
 | 
			
		||||
import numpy as np
 | 
			
		||||
from scipy.interpolate import griddata
 | 
			
		||||
@ -28,12 +29,12 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
    def _generateReceiverlines(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Connects the traceIDs to the lineIDs 
 | 
			
		||||
        Connects the traceIDs to the lineIDs
 | 
			
		||||
        for each receiverline in a dictionary.
 | 
			
		||||
        '''
 | 
			
		||||
        for receiver in self._receiverlist:
 | 
			
		||||
            traceID = int(receiver.split()[0]) 
 | 
			
		||||
            lineID =  int(receiver.split()[1]) 
 | 
			
		||||
            traceID = int(receiver.split()[0])
 | 
			
		||||
            lineID =  int(receiver.split()[1])
 | 
			
		||||
            if not lineID in self._receiverlines.keys():
 | 
			
		||||
                self._receiverlines[lineID] = []
 | 
			
		||||
            self._receiverlines[lineID].append(traceID)
 | 
			
		||||
@ -43,16 +44,16 @@ class SeisArray(object):
 | 
			
		||||
        Fills the three x, y, z dictionaries with measured coordinates
 | 
			
		||||
        '''
 | 
			
		||||
        for line in self._getReceiverlist():
 | 
			
		||||
            traceID = int(line.split()[0]) 
 | 
			
		||||
            x = float(line.split()[3]) 
 | 
			
		||||
            y = float(line.split()[4]) 
 | 
			
		||||
            z = float(line.split()[5]) 
 | 
			
		||||
            traceID = int(line.split()[0])
 | 
			
		||||
            x = float(line.split()[3])
 | 
			
		||||
            y = float(line.split()[4])
 | 
			
		||||
            z = float(line.split()[5])
 | 
			
		||||
            self._receiverCoords[traceID] = (x, y, z)
 | 
			
		||||
            self._measuredReceivers[traceID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def _setGeophoneNumbers(self):
 | 
			
		||||
        for line in self._getReceiverlist():
 | 
			
		||||
            traceID = int(line.split()[0]) 
 | 
			
		||||
            traceID = int(line.split()[0])
 | 
			
		||||
            gphoneNum = float(line.split()[2])
 | 
			
		||||
            self._geophoneNumbers[traceID] = gphoneNum
 | 
			
		||||
 | 
			
		||||
@ -93,7 +94,7 @@ class SeisArray(object):
 | 
			
		||||
        return self._geophoneNumbers[traceID]
 | 
			
		||||
 | 
			
		||||
    def getMeasuredReceivers(self):
 | 
			
		||||
        return self._measuredReceivers 
 | 
			
		||||
        return self._measuredReceivers
 | 
			
		||||
 | 
			
		||||
    def getMeasuredTopo(self):
 | 
			
		||||
        return self._measuredTopo
 | 
			
		||||
@ -139,11 +140,11 @@ class SeisArray(object):
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) < self._getReceiverValue(traceID2, coordinate):
 | 
			
		||||
            direction = +1
 | 
			
		||||
            return direction
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate): 
 | 
			
		||||
        if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
 | 
			
		||||
            direction = -1
 | 
			
		||||
            return direction
 | 
			
		||||
        print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
 | 
			
		||||
                        
 | 
			
		||||
 | 
			
		||||
    def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the mean distance between two traceID's depending on the number of geophones in between
 | 
			
		||||
@ -186,7 +187,7 @@ class SeisArray(object):
 | 
			
		||||
            x = float(line[1])
 | 
			
		||||
            y = float(line[2])
 | 
			
		||||
            z = float(line[3])
 | 
			
		||||
            self._measuredTopo[pointID] = (x, y, z)        
 | 
			
		||||
            self._measuredTopo[pointID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def addSourceLocations(self, filename):
 | 
			
		||||
        '''
 | 
			
		||||
@ -202,7 +203,7 @@ class SeisArray(object):
 | 
			
		||||
            x = float(line[1])
 | 
			
		||||
            y = float(line[2])
 | 
			
		||||
            z = float(line[3])
 | 
			
		||||
            self._sourceLocs[pointID] = (x, y, z)        
 | 
			
		||||
            self._sourceLocs[pointID] = (x, y, z)
 | 
			
		||||
 | 
			
		||||
    def interpZcoords4rec(self, method = 'linear'):
 | 
			
		||||
        '''
 | 
			
		||||
@ -239,9 +240,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for traceID in self.getMeasuredReceivers().keys():
 | 
			
		||||
            x.append(self.getMeasuredReceivers()[traceID][0])        
 | 
			
		||||
            x.append(self.getMeasuredReceivers()[traceID][0])
 | 
			
		||||
            y.append(self.getMeasuredReceivers()[traceID][1])
 | 
			
		||||
            z.append(self.getMeasuredReceivers()[traceID][2])        
 | 
			
		||||
            z.append(self.getMeasuredReceivers()[traceID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getMeasuredTopoLists(self):
 | 
			
		||||
@ -250,9 +251,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for pointID in self.getMeasuredTopo().keys():
 | 
			
		||||
            x.append(self.getMeasuredTopo()[pointID][0])        
 | 
			
		||||
            x.append(self.getMeasuredTopo()[pointID][0])
 | 
			
		||||
            y.append(self.getMeasuredTopo()[pointID][1])
 | 
			
		||||
            z.append(self.getMeasuredTopo()[pointID][2])        
 | 
			
		||||
            z.append(self.getMeasuredTopo()[pointID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getSourceLocsLists(self):
 | 
			
		||||
@ -261,9 +262,9 @@ class SeisArray(object):
 | 
			
		||||
        '''
 | 
			
		||||
        x = []; y = []; z = []
 | 
			
		||||
        for pointID in self.getSourceLocations().keys():
 | 
			
		||||
            x.append(self.getSourceLocations()[pointID][0])        
 | 
			
		||||
            x.append(self.getSourceLocations()[pointID][0])
 | 
			
		||||
            y.append(self.getSourceLocations()[pointID][1])
 | 
			
		||||
            z.append(self.getSourceLocations()[pointID][2])        
 | 
			
		||||
            z.append(self.getSourceLocations()[pointID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
 | 
			
		||||
    def getAllMeasuredPointsLists(self):
 | 
			
		||||
@ -289,7 +290,7 @@ class SeisArray(object):
 | 
			
		||||
            y.append(self.getReceiverCoordinates()[traceID][1])
 | 
			
		||||
            z.append(self.getReceiverCoordinates()[traceID][2])
 | 
			
		||||
        return x, y, z
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
    def _interpolateXY4rec(self):
 | 
			
		||||
        '''
 | 
			
		||||
        Interpolates the X and Y coordinates for all receivers.
 | 
			
		||||
@ -317,7 +318,7 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
        :param: phiWE (W, E) extensions of the model in degree
 | 
			
		||||
        type: tuple
 | 
			
		||||
        '''                                       
 | 
			
		||||
        '''
 | 
			
		||||
 | 
			
		||||
        surface = []
 | 
			
		||||
        elevation = 0.25 # elevate topography so that no source lies above the surface
 | 
			
		||||
@ -356,9 +357,9 @@ class SeisArray(object):
 | 
			
		||||
                progress = float(count) / float(nTotal) * 100
 | 
			
		||||
                self._update_progress(progress)
 | 
			
		||||
 | 
			
		||||
                if filename is not None: 
 | 
			
		||||
                if filename is not None:
 | 
			
		||||
                    outfile.writelines('%10s\n'%(z + elevation))
 | 
			
		||||
                
 | 
			
		||||
 | 
			
		||||
        return surface
 | 
			
		||||
 | 
			
		||||
    def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
 | 
			
		||||
@ -415,7 +416,7 @@ class SeisArray(object):
 | 
			
		||||
        thetaDelta = abs(thetaN - thetaS) / (nTheta - 1)
 | 
			
		||||
        phiDelta = abs(phiE - phiW) / (nPhi - 1)
 | 
			
		||||
        rDelta = abs(rbot - rtop) / (nR - 1)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # create a regular grid including +2 cushion nodes in every direction
 | 
			
		||||
        thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
 | 
			
		||||
        phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
 | 
			
		||||
@ -455,7 +456,7 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
                    progress = float(count) / float(nTotal) * 100
 | 
			
		||||
                    self._update_progress(progress)
 | 
			
		||||
                    
 | 
			
		||||
 | 
			
		||||
        outfile.close()
 | 
			
		||||
 | 
			
		||||
    def exportAll(self, filename = 'interpolated_receivers.out'):
 | 
			
		||||
@ -463,7 +464,7 @@ class SeisArray(object):
 | 
			
		||||
        count = 0
 | 
			
		||||
        for traceID in self.getReceiverCoordinates().keys():
 | 
			
		||||
            count += 1
 | 
			
		||||
            x, y, z = self.getReceiverCoordinates()[traceID] 
 | 
			
		||||
            x, y, z = self.getReceiverCoordinates()[traceID]
 | 
			
		||||
            recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
 | 
			
		||||
        print "Exported coordinates for %s traces to file > %s" %(count, filename)
 | 
			
		||||
        recfile_out.close()
 | 
			
		||||
@ -472,15 +473,15 @@ class SeisArray(object):
 | 
			
		||||
        import matplotlib.pyplot as plt
 | 
			
		||||
        plt.interactive(True)
 | 
			
		||||
        plt.figure()
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists() 
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists()
 | 
			
		||||
        xsc, ysc, zsc = self.getSourceLocsLists()
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists() 
 | 
			
		||||
        xrc, yrc, zrc = self.getReceiverLists() 
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists()
 | 
			
		||||
        xrc, yrc, zrc = self.getReceiverLists()
 | 
			
		||||
 | 
			
		||||
        plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers')
 | 
			
		||||
        plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations')
 | 
			
		||||
 | 
			
		||||
        if plot_topo == True: 
 | 
			
		||||
        if plot_topo == True:
 | 
			
		||||
            plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points')
 | 
			
		||||
        if highlight_measured == True:
 | 
			
		||||
            plt.plot(xmr, ymr, 'ro', label = 'measured receivers')
 | 
			
		||||
@ -501,9 +502,9 @@ class SeisArray(object):
 | 
			
		||||
            fig = plt.figure()
 | 
			
		||||
            ax = plt.axes(projection = '3d')
 | 
			
		||||
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists() 
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists() 
 | 
			
		||||
        xin, yin, zin = self.getReceiverLists() 
 | 
			
		||||
        xmt, ymt, zmt = self.getMeasuredTopoLists()
 | 
			
		||||
        xmr, ymr, zmr = self.getMeasuredReceiverLists()
 | 
			
		||||
        xin, yin, zin = self.getReceiverLists()
 | 
			
		||||
 | 
			
		||||
        ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points')
 | 
			
		||||
        ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers')
 | 
			
		||||
@ -512,8 +513,8 @@ class SeisArray(object):
 | 
			
		||||
        ax.legend()
 | 
			
		||||
 | 
			
		||||
        return ax
 | 
			
		||||
            
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'):
 | 
			
		||||
        from matplotlib import cm
 | 
			
		||||
        import matplotlib.pyplot as plt
 | 
			
		||||
@ -657,8 +658,8 @@ class SeisArray(object):
 | 
			
		||||
 | 
			
		||||
        cPickle.dump(self, outfile, -1)
 | 
			
		||||
        print('saved SeisArray to file %s'%(filename))
 | 
			
		||||
        
 | 
			
		||||
    @staticmethod    
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def from_pickle(filename):
 | 
			
		||||
        import cPickle
 | 
			
		||||
        infile = open(filename, 'rb')
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,6 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import numpy as np
 | 
			
		||||
from obspy.core import read
 | 
			
		||||
@ -31,8 +34,7 @@ class SeismicShot(object):
 | 
			
		||||
        self.snr = {}
 | 
			
		||||
        self.snrthreshold = {}
 | 
			
		||||
        self.timeArray = {}
 | 
			
		||||
        self.paras = {}
 | 
			
		||||
        self.paras['shotname'] = obsfile
 | 
			
		||||
        self.paras = {'shotname': obsfile}
 | 
			
		||||
 | 
			
		||||
    def removeEmptyTraces(self):
 | 
			
		||||
        traceIDs = []
 | 
			
		||||
@ -40,14 +42,14 @@ class SeismicShot(object):
 | 
			
		||||
        removed = []
 | 
			
		||||
        for i in range(0, len(coordlist)):
 | 
			
		||||
            traceIDs.append(int(coordlist[i].split()[0]))
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
        for trace in self.traces:
 | 
			
		||||
            try:
 | 
			
		||||
                traceIDs.index(int(trace.stats.channel))
 | 
			
		||||
            except:
 | 
			
		||||
                self.traces.remove(trace)        
 | 
			
		||||
                self.traces.remove(trace)
 | 
			
		||||
                removed.append(int(trace.stats.channel))
 | 
			
		||||
                
 | 
			
		||||
 | 
			
		||||
        if len(removed) > 0:
 | 
			
		||||
            return removed
 | 
			
		||||
 | 
			
		||||
@ -55,7 +57,7 @@ class SeismicShot(object):
 | 
			
		||||
        for trace in self.traces:
 | 
			
		||||
            if traceID == trace.stats.channel:
 | 
			
		||||
                self.traces.remove(trace)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # for traceID in TraceIDs:
 | 
			
		||||
        #     traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
 | 
			
		||||
        #     if len(traces) is not 1:
 | 
			
		||||
@ -153,10 +155,10 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
    def getPickError(self, traceID):
 | 
			
		||||
        pickerror = abs(self.getEarliest(traceID) - self.getLatest(traceID))
 | 
			
		||||
        if np.isnan(pickerror) == True: 
 | 
			
		||||
            print "SPE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID)
 | 
			
		||||
        return pickerror 
 | 
			
		||||
  
 | 
			
		||||
        if np.isnan(pickerror) == True:
 | 
			
		||||
            print("SPE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID))
 | 
			
		||||
        return pickerror
 | 
			
		||||
 | 
			
		||||
    def getStreamTraceIDs(self):
 | 
			
		||||
        traceIDs = []
 | 
			
		||||
        for trace in self.traces:
 | 
			
		||||
@ -178,15 +180,15 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
    def getPickwindow(self, traceID):
 | 
			
		||||
        try:
 | 
			
		||||
            self.pickwindow[traceID]    
 | 
			
		||||
        except KeyError, e:
 | 
			
		||||
            self.pickwindow[traceID]
 | 
			
		||||
        except KeyError as e:
 | 
			
		||||
            print('no pickwindow for trace %s, set to %s' % (traceID, self.getCut()))
 | 
			
		||||
            self.setPickwindow(traceID, self.getCut())
 | 
			
		||||
        return self.pickwindow[traceID]
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    def getSNR(self, traceID):
 | 
			
		||||
        return self.snr[traceID]
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    def getSNRthreshold(self, traceID):
 | 
			
		||||
        return self.snrthreshold[traceID]
 | 
			
		||||
 | 
			
		||||
@ -262,17 +264,21 @@ class SeismicShot(object):
 | 
			
		||||
            return Stream(traces)
 | 
			
		||||
        else:
 | 
			
		||||
            self.setPick(traceID, None)
 | 
			
		||||
            print 'Warning: ambigious or empty traceID: %s' % traceID
 | 
			
		||||
        
 | 
			
		||||
            print('Warning: ambigious or empty traceID: %s' % traceID)
 | 
			
		||||
 | 
			
		||||
        #raise ValueError('ambigious or empty traceID: %s' % traceID)
 | 
			
		||||
        
 | 
			
		||||
    def pickTraces(self, traceID, windowsize, folm = 0.6, HosAic = 'hos'): ########## input variables ##########
 | 
			
		||||
 | 
			
		||||
    def pickTraces(self, traceID, pickmethod, windowsize, folm = 0.6, HosAic = 'hos'): ########## input variables ##########
 | 
			
		||||
        # LOCALMAX NOT IMPLEMENTED!
 | 
			
		||||
        '''
 | 
			
		||||
        Intitiate picking for a trace.
 | 
			
		||||
 | 
			
		||||
        :param: traceID
 | 
			
		||||
        :type: int
 | 
			
		||||
 | 
			
		||||
        :param: pickmethod, use either 'threshold' or 'localmax' method. (localmax not yet implemented 04_08_15)
 | 
			
		||||
        :type: string
 | 
			
		||||
 | 
			
		||||
        :param: cutwindow (equals HOScf 'cut' variable)
 | 
			
		||||
        :type: tuple
 | 
			
		||||
 | 
			
		||||
@ -296,7 +302,13 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
        self.timeArray[traceID] = hoscf.getTimeArray()
 | 
			
		||||
 | 
			
		||||
        aiccftime, hoscftime = self.threshold(hoscf, aiccf, windowsize, self.getPickwindow(traceID), folm)
 | 
			
		||||
        if pickmethod == 'threshold':
 | 
			
		||||
            aiccftime, hoscftime = self.threshold(hoscf, aiccf, windowsize, self.getPickwindow(traceID), folm)
 | 
			
		||||
 | 
			
		||||
        #setpick = {'threshold':self.threshold,
 | 
			
		||||
         #          'localmax':self.localmax}
 | 
			
		||||
 | 
			
		||||
        #aiccftime, hoscftime = setpick[pickmethod](hoscf, aiccf, windowsize, pickwindow)
 | 
			
		||||
 | 
			
		||||
        setHosAic = {'hos': hoscftime,
 | 
			
		||||
                     'aic': aiccftime}
 | 
			
		||||
@ -316,9 +328,9 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
    def threshold(self, hoscf, aiccf, windowsize, pickwindow, folm = 0.6):
 | 
			
		||||
        '''
 | 
			
		||||
        Threshold picker, using the local maximum in a pickwindow to find the time at 
 | 
			
		||||
        Threshold picker, using the local maximum in a pickwindow to find the time at
 | 
			
		||||
        which a fraction of the local maximum is reached for the first time.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: hoscf, Higher Order Statistics Characteristic Function
 | 
			
		||||
        :type: 'Characteristic Function'
 | 
			
		||||
 | 
			
		||||
@ -344,34 +356,34 @@ class SeismicShot(object):
 | 
			
		||||
        threshold = folm * max(hoscflist[leftb : rightb]) # combination of local maximum and threshold
 | 
			
		||||
 | 
			
		||||
        m = leftb
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        while hoscflist[m] < threshold:
 | 
			
		||||
            m += 1
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
        hoscftime = list(hoscf.getTimeArray())[m]
 | 
			
		||||
 | 
			
		||||
        lb = max(0, m - windowsize[0]) # if window exceeds t = 0
 | 
			
		||||
        aiccfcut = list(aiccf.getCF())[lb : m + windowsize[1]]
 | 
			
		||||
        n = aiccfcut.index(min(aiccfcut))
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
        m = lb + n
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
        aiccftime = list(hoscf.getTimeArray())[m]
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
        return aiccftime, hoscftime
 | 
			
		||||
 | 
			
		||||
    def getDistance(self, traceID):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the distance of the receiver with the ID == traceID to the source location (shot location).
 | 
			
		||||
        Uses getSrcLoc and getRecLoc.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: traceID
 | 
			
		||||
        :type: int
 | 
			
		||||
        '''
 | 
			
		||||
        shotX, shotY, shotZ = self.getSrcLoc()
 | 
			
		||||
        recX, recY, recZ = self.getRecLoc(traceID)
 | 
			
		||||
        dist = np.sqrt((shotX-recX)**2 + (shotY-recY)**2 + (shotZ-recZ)**2)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        if np.isnan(dist) == True:
 | 
			
		||||
            raise ValueError("Distance is NaN for traceID %s" %traceID)
 | 
			
		||||
 | 
			
		||||
@ -382,7 +394,7 @@ class SeismicShot(object):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the location (x, y, z) of the receiver with the ID == traceID.
 | 
			
		||||
        RECEIVEIVER FILE MUST BE SET FIRST, TO BE IMPROVED.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: traceID
 | 
			
		||||
        :type: int
 | 
			
		||||
        '''
 | 
			
		||||
@ -396,7 +408,7 @@ class SeismicShot(object):
 | 
			
		||||
                y = coordlist[i].split()[2]
 | 
			
		||||
                z = coordlist[i].split()[3]
 | 
			
		||||
                return float(x), float(y), float(z)
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
        #print "WARNING: traceID %s not found" % traceID
 | 
			
		||||
        raise ValueError("traceID %s not found" % traceID)
 | 
			
		||||
        #return float(self.getSingleStream(traceID)[0].stats.seg2['RECEIVER_LOCATION'])
 | 
			
		||||
@ -419,7 +431,7 @@ class SeismicShot(object):
 | 
			
		||||
        '''
 | 
			
		||||
        Returns the traceID(s) for a certain distance between source and receiver.
 | 
			
		||||
        Used for 2D Tomography. TO BE IMPROVED.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: distance
 | 
			
		||||
        :type: real
 | 
			
		||||
 | 
			
		||||
@ -444,7 +456,7 @@ class SeismicShot(object):
 | 
			
		||||
    def setManualPicks(self, traceID, picklist): ########## picklist momentan nicht allgemein, nur testweise benutzt ##########
 | 
			
		||||
        '''
 | 
			
		||||
        Sets the manual picks for a receiver with the ID == traceID for comparison.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: traceID
 | 
			
		||||
        :type: int
 | 
			
		||||
 | 
			
		||||
@ -459,8 +471,8 @@ class SeismicShot(object):
 | 
			
		||||
        if not self.manualpicks.has_key(traceID):
 | 
			
		||||
            self.manualpicks[traceID] = (mostlikely, earliest, latest)
 | 
			
		||||
        #else:
 | 
			
		||||
        #    raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID) 
 | 
			
		||||
        
 | 
			
		||||
        #    raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
 | 
			
		||||
 | 
			
		||||
    def setPick(self, traceID, pick): ########## siehe Kommentar ##########
 | 
			
		||||
        if not traceID in self.pick.keys():
 | 
			
		||||
            self.pick[traceID] = {}
 | 
			
		||||
@ -470,7 +482,7 @@ class SeismicShot(object):
 | 
			
		||||
        # if not self.pick.has_key(traceID):
 | 
			
		||||
        #     self.getPick(traceID) = picks
 | 
			
		||||
        # else:
 | 
			
		||||
        #     raise KeyError('pick to be set more than once for traceID %s' % traceID) 
 | 
			
		||||
        #     raise KeyError('pick to be set more than once for traceID %s' % traceID)
 | 
			
		||||
 | 
			
		||||
        #    def readParameter(self, parfile):
 | 
			
		||||
        #        parlist = open(parfile,'r').readlines()
 | 
			
		||||
@ -491,12 +503,13 @@ class SeismicShot(object):
 | 
			
		||||
    def setSNR(self, traceID):  ########## FORCED HOS PICK ##########
 | 
			
		||||
        '''
 | 
			
		||||
        Gets the SNR using pylot and then sets the SNR for the traceID.
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        :param: traceID
 | 
			
		||||
        :type: int
 | 
			
		||||
 | 
			
		||||
        :param: (tnoise, tgap, tsignal), as used in pylot SNR
 | 
			
		||||
        '''
 | 
			
		||||
 | 
			
		||||
        from pylot.core.pick.utils import getSNR
 | 
			
		||||
 | 
			
		||||
        tgap = self.getTgap()
 | 
			
		||||
@ -526,7 +539,7 @@ class SeismicShot(object):
 | 
			
		||||
    # def plot2dttc(self, dist_med = 0):  ########## 2D ##########
 | 
			
		||||
    #     '''
 | 
			
		||||
    #     Function to plot the traveltime curve for automated picks (AIC & HOS) of a shot. 2d only!
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
    #     :param: dist_med (optional)
 | 
			
		||||
    #     :type: 'dictionary'
 | 
			
		||||
    #     '''
 | 
			
		||||
@ -534,7 +547,7 @@ class SeismicShot(object):
 | 
			
		||||
    #     plt.interactive('True')
 | 
			
		||||
    #     aictimearray = []
 | 
			
		||||
    #     hostimearray = []
 | 
			
		||||
    #     if dist_med is not 0: 
 | 
			
		||||
    #     if dist_med is not 0:
 | 
			
		||||
    #         dist_medarray = []
 | 
			
		||||
 | 
			
		||||
    #     i = 1
 | 
			
		||||
@ -625,7 +638,7 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
        stream = self.getSingleStream(traceID)
 | 
			
		||||
        stime = getGlobalTimes(stream)[0]
 | 
			
		||||
        timeaxis = prepTimeAxis(stime, stream[0]) 
 | 
			
		||||
        timeaxis = prepTimeAxis(stime, stream[0])
 | 
			
		||||
        timeaxis -= stime
 | 
			
		||||
        
 | 
			
		||||
        ax = self.traces4plot[traceID]['ax1']
 | 
			
		||||
@ -707,7 +720,7 @@ class SeismicShot(object):
 | 
			
		||||
        if ax == None:
 | 
			
		||||
            fig = plt.figure()
 | 
			
		||||
            ax = plt.axes(projection = '3d')
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        xsrc, ysrc, zsrc = self.getSrcLoc()
 | 
			
		||||
 | 
			
		||||
        if contour == True:
 | 
			
		||||
@ -719,10 +732,10 @@ class SeismicShot(object):
 | 
			
		||||
 | 
			
		||||
        if plotpicks == True:
 | 
			
		||||
            ax.plot(x, y, z, 'k.')
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    def plotttc(self, method, *args):
 | 
			
		||||
        plotmethod = {'2d': self.plot2dttc, '3d': self.plot3dttc}
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        plotmethod[method](*args)
 | 
			
		||||
        
 | 
			
		||||
    def matshow(self, ax = None, step = 0.5, method = 'linear', plotRec = True, annotations = True, colorbar = True):
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import math
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
@ -1,16 +1,69 @@
 | 
			
		||||
import numpy as np
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
from pylab import *
 | 
			
		||||
startpos = []
 | 
			
		||||
endpos = []
 | 
			
		||||
 | 
			
		||||
def generateSurvey(obsdir, shotlist):
 | 
			
		||||
    from obspy.core import read
 | 
			
		||||
    from pylot.core.active import seismicshot
 | 
			
		||||
 | 
			
		||||
    shot_dict = {}
 | 
			
		||||
    for shotnumber in shotlist:       # loop over data files
 | 
			
		||||
        # generate filenames and read manual picks to a list
 | 
			
		||||
        obsfile = obsdir + str(shotnumber) + '_pickle.dat'
 | 
			
		||||
        #obsfile = obsdir + str(shotnumber) + '.dat'
 | 
			
		||||
 | 
			
		||||
        if not obsfile in shot_dict.keys():
 | 
			
		||||
            shot_dict[shotnumber] = []
 | 
			
		||||
        shot_dict[shotnumber] = seismicshot.SeismicShot(obsfile)
 | 
			
		||||
        shot_dict[shotnumber].setParameters('shotnumber', shotnumber)
 | 
			
		||||
 | 
			
		||||
    return shot_dict
 | 
			
		||||
 | 
			
		||||
def setParametersForShots(cutwindow, tmovwind, tsignal, tgap, receiverfile, sourcefile, shot_dict):
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        shot.setCut(cutwindow)
 | 
			
		||||
        shot.setTmovwind(tmovwind)
 | 
			
		||||
        shot.setTsignal(tsignal)
 | 
			
		||||
        shot.setTgap(tgap)
 | 
			
		||||
        shot.setRecfile(receiverfile)
 | 
			
		||||
        shot.setSourcefile(sourcefile)
 | 
			
		||||
        shot.setOrder(order = 4)
 | 
			
		||||
 | 
			
		||||
def removeEmptyTraces(shot_dict):
 | 
			
		||||
    filename = 'removeEmptyTraces.out'
 | 
			
		||||
    filename2 = 'updateTraces.out'
 | 
			
		||||
    outfile = open(filename, 'w')
 | 
			
		||||
    outfile2 = open(filename2, 'w')
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        del_traceIDs = shot.updateTraceList()
 | 
			
		||||
        removed = shot.removeEmptyTraces()
 | 
			
		||||
        if removed is not None:
 | 
			
		||||
            outfile.writelines('shot: %s, removed empty traces: %s\n' %(shot.getShotnumber(), removed))
 | 
			
		||||
            outfile2.writelines('shot: %s, removed traceID(s) %s because they were not found in the corresponding stream\n' %(shot.getShotnumber(), del_traceIDs))
 | 
			
		||||
    print '\nremoveEmptyTraces, updateTraces: Finished! See %s and %s for more information of removed traces.\n' %(filename, filename2)
 | 
			
		||||
    outfile.close()
 | 
			
		||||
    outfile2.close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def readParameters(parfile, parameter):
 | 
			
		||||
    from ConfigParser import ConfigParser
 | 
			
		||||
    parameterConfig = ConfigParser()
 | 
			
		||||
    parameterConfig.read('parfile')
 | 
			
		||||
    
 | 
			
		||||
    value = parameterConfig.get('vars', parameter).split('#')[0]
 | 
			
		||||
    value = value.replace(" ", "")
 | 
			
		||||
 | 
			
		||||
    value = parameterConfig.get('vars', parameter).split('\t')[0]
 | 
			
		||||
 | 
			
		||||
    return value
 | 
			
		||||
 | 
			
		||||
def setArtificialPick(shot_dict, traceID, pick):
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        shot.setPick(traceID, pick)
 | 
			
		||||
        shot.setPickwindow(traceID, shot.getCut())
 | 
			
		||||
 | 
			
		||||
def fitSNR4dist(shot_dict, shiftdist = 5):
 | 
			
		||||
    import numpy as np
 | 
			
		||||
    dists = []
 | 
			
		||||
    picks = []
 | 
			
		||||
    snrs = []
 | 
			
		||||
@ -31,6 +84,7 @@ def fitSNR4dist(shot_dict, shiftdist = 5):
 | 
			
		||||
    plotFittedSNR(dists, snrthresholds, snrs)
 | 
			
		||||
    return fit_fn #### ZU VERBESSERN, sollte fertige funktion wiedergeben
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def plotFittedSNR(dists, snrthresholds, snrs):
 | 
			
		||||
    import matplotlib.pyplot as plt
 | 
			
		||||
    plt.interactive(True)
 | 
			
		||||
@ -42,25 +96,98 @@ def plotFittedSNR(dists, snrthresholds, snrs):
 | 
			
		||||
    plt.legend()
 | 
			
		||||
 | 
			
		||||
def setFittedSNR(shot_dict, shiftdist = 5, p1 = 0.004, p2 = -0.004):
 | 
			
		||||
    import numpy as np
 | 
			
		||||
    #fit_fn = fitSNR4dist(shot_dict)
 | 
			
		||||
    fit_fn = np.poly1d([p1, p2])
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        for traceID in shot.getTraceIDlist(): ### IMPROVE
 | 
			
		||||
            shot.setSNRthreshold(traceID, 1/(fit_fn(shot.getDistance(traceID) + shiftdist)**2)) ### s.o.
 | 
			
		||||
    print "\nsetFittedSNR: Finished setting of fitted SNR-threshold"
 | 
			
		||||
    print "setFittedSNR: Finished setting of fitted SNR-threshold"
 | 
			
		||||
 | 
			
		||||
#def linearInterp(dist_med, dist_start
 | 
			
		||||
 | 
			
		||||
def exportFMTOMO(shot_dict, directory = 'FMTOMO_export', sourcefile = 'input_sf.in', ttFileExtension = '.tt'):
 | 
			
		||||
    count = 0
 | 
			
		||||
    fmtomo_factor = 1000 # transforming [m/s] -> [km/s]
 | 
			
		||||
    LatAll = []; LonAll = []; DepthAll = []
 | 
			
		||||
    srcfile = open(directory + '/' + sourcefile, 'w')
 | 
			
		||||
    srcfile.writelines('%10s\n' %len(shot_dict)) # number of sources
 | 
			
		||||
    for shotnumber in getShotlist(shot_dict):
 | 
			
		||||
        shot = getShotForShotnumber(shot_dict, shotnumber)
 | 
			
		||||
        ttfilename = str(shotnumber) + ttFileExtension
 | 
			
		||||
        (x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
 | 
			
		||||
        srcfile.writelines('%10s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z)) # lat, lon, depth
 | 
			
		||||
        LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
 | 
			
		||||
        srcfile.writelines('%10s\n' %1) #
 | 
			
		||||
        srcfile.writelines('%10s %10s %10s\n' %(1, 1, ttfilename))
 | 
			
		||||
        ttfile = open(directory + '/' + ttfilename, 'w')
 | 
			
		||||
        traceIDlist = shot.getTraceIDlist()
 | 
			
		||||
        traceIDlist.sort()
 | 
			
		||||
        ttfile.writelines(str(countPickedTraces(shot)) + '\n')
 | 
			
		||||
        for traceID in traceIDlist:
 | 
			
		||||
            if shot.getPick(traceID) is not None:
 | 
			
		||||
                pick = shot.getPick(traceID) * fmtomo_factor
 | 
			
		||||
                delta = shot.getPickError(traceID) * fmtomo_factor
 | 
			
		||||
                (x, y, z) = shot.getRecLoc(traceID)
 | 
			
		||||
                ttfile.writelines('%20s %20s %20s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z, pick, delta))
 | 
			
		||||
                LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
 | 
			
		||||
                count += 1
 | 
			
		||||
        ttfile.close()
 | 
			
		||||
    srcfile.close()
 | 
			
		||||
    print 'Wrote output for %s traces' %count
 | 
			
		||||
    print 'WARNING: output generated for FMTOMO-obsdata. Obsdata seems to take Lat, Lon, Depth and creates output for FMTOMO as Depth, Lat, Lon'
 | 
			
		||||
    print 'Dimensions of the seismic Array, transformed for FMTOMO, are Depth(%s, %s), Lat(%s, %s), Lon(%s, %s)'%(
 | 
			
		||||
        min(DepthAll), max(DepthAll), min(LatAll), max(LatAll), min(LonAll), max(LonAll))
 | 
			
		||||
 | 
			
		||||
def getShotlist(shot_dict):
 | 
			
		||||
    shotlist = []
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        shotlist.append(shot.getShotnumber())
 | 
			
		||||
    shotlist.sort()
 | 
			
		||||
    return shotlist
 | 
			
		||||
 | 
			
		||||
def getShotForShotnumber(shot_dict, shotnumber):
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        if shot.getShotnumber() == shotnumber:
 | 
			
		||||
            return shot
 | 
			
		||||
 | 
			
		||||
def getAngle(distance):
 | 
			
		||||
    '''
 | 
			
		||||
    Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
 | 
			
		||||
    '''
 | 
			
		||||
    import numpy as np
 | 
			
		||||
    PI = np.pi
 | 
			
		||||
    R = 6371.
 | 
			
		||||
    angle = distance * 180 / (PI * R)
 | 
			
		||||
    return angle
 | 
			
		||||
 | 
			
		||||
def countPickedTraces(shot):
 | 
			
		||||
    numtraces = 0
 | 
			
		||||
    for traceID in shot.getTraceIDlist():
 | 
			
		||||
        if shot.getPick(traceID) is not None:
 | 
			
		||||
            numtraces += 1
 | 
			
		||||
    print "countPickedTraces: Found %s picked traces in shot number %s"  %(numtraces, shot.getShotnumber())
 | 
			
		||||
    return numtraces
 | 
			
		||||
 | 
			
		||||
def countAllPickedTraces(shot_dict):
 | 
			
		||||
    traces = 0
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
        traces += countPickedTraces(shot)
 | 
			
		||||
    return traces
 | 
			
		||||
 | 
			
		||||
def findTracesInRanges(shot_dict, distancebin, pickbin):
 | 
			
		||||
    '''
 | 
			
		||||
    Returns traces corresponding to a certain area in a plot with all picks over the distances.
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    :param: shot_dict, dictionary containing all shots that are used
 | 
			
		||||
    :type: dictionary
 | 
			
		||||
                                                                                     
 | 
			
		||||
 | 
			
		||||
    :param: distancebin
 | 
			
		||||
    :type: tuple, (dist1[m], dist2[m])
 | 
			
		||||
                                                                                     
 | 
			
		||||
 | 
			
		||||
    :param: pickbin
 | 
			
		||||
    :type: tuple, (t1[s], t2[s])
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    shots_found = {}
 | 
			
		||||
    for shot in shot_dict.values():
 | 
			
		||||
@ -72,3 +199,6 @@ def findTracesInRanges(shot_dict, distancebin, pickbin):
 | 
			
		||||
                    shots_found[shot.getShotnumber()].append(traceID)
 | 
			
		||||
 | 
			
		||||
    return shots_found
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -0,0 +1 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
@ -6,7 +6,7 @@ from obspy.signal.trigger import coincidenceTrigger
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class CoincidenceTimes():
 | 
			
		||||
class CoincidenceTimes(object):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, st, comp='Z', coinum=4, sta=1., lta=10., on=5., off=1.):
 | 
			
		||||
        _type = 'recstalta'
 | 
			
		||||
@ -54,4 +54,4 @@ def main():
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
    main()
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
"""
 | 
			
		||||
Created August/September 2015.
 | 
			
		||||
@ -34,7 +35,7 @@ class Magnitude(object):
 | 
			
		||||
        :type: integer
 | 
			
		||||
 | 
			
		||||
        '''
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        assert isinstance(wfstream, Stream), "%s is not a stream object" % str(wfstream)
 | 
			
		||||
 | 
			
		||||
        self.setwfstream(wfstream)
 | 
			
		||||
@ -62,7 +63,7 @@ class Magnitude(object):
 | 
			
		||||
 | 
			
		||||
    def setpwin(self, pwin):
 | 
			
		||||
        self.pwin = pwin
 | 
			
		||||
   
 | 
			
		||||
 | 
			
		||||
    def getiplot(self):
 | 
			
		||||
        return self.iplot
 | 
			
		||||
 | 
			
		||||
@ -71,7 +72,7 @@ class Magnitude(object):
 | 
			
		||||
 | 
			
		||||
    def getwapp(self):
 | 
			
		||||
        return self.wapp
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
    def getw0(self):
 | 
			
		||||
        return self.w0
 | 
			
		||||
 | 
			
		||||
@ -103,7 +104,7 @@ class WApp(Magnitude):
 | 
			
		||||
            'poles': [5.6089 - 5.4978j, -5.6089 - 5.4978j],
 | 
			
		||||
            'zeros': [0j, 0j],
 | 
			
		||||
            'gain': 2080,
 | 
			
		||||
            'sensitivity': 1} 
 | 
			
		||||
            'sensitivity': 1}
 | 
			
		||||
 | 
			
		||||
        stream.simulate(paz_remove=None, paz_simulate=paz_wa)
 | 
			
		||||
 | 
			
		||||
@ -133,19 +134,19 @@ class WApp(Magnitude):
 | 
			
		||||
            raw_input()
 | 
			
		||||
            plt.close(f)
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
class DCfc(Magnitude):
 | 
			
		||||
    '''
 | 
			
		||||
    Method to calculate the source spectrum and to derive from that the plateau 
 | 
			
		||||
    (so-called DC-value) and the corner frequency assuming Aki's omega-square 
 | 
			
		||||
    Method to calculate the source spectrum and to derive from that the plateau
 | 
			
		||||
    (so-called DC-value) and the corner frequency assuming Aki's omega-square
 | 
			
		||||
    source model. Has to be derived from instrument corrected displacement traces!
 | 
			
		||||
    '''
 | 
			
		||||
 | 
			
		||||
    def calcsourcespec(self):
 | 
			
		||||
    	print ("Calculating source spectrum ....")
 | 
			
		||||
        print ("Calculating source spectrum ....")
 | 
			
		||||
 | 
			
		||||
        self.w0 = None # DC-value
 | 
			
		||||
        self.fc = None # corner frequency 
 | 
			
		||||
        self.fc = None # corner frequency
 | 
			
		||||
 | 
			
		||||
        stream = self.getwfstream()
 | 
			
		||||
        tr = stream[0]
 | 
			
		||||
@ -155,7 +156,7 @@ class DCfc(Magnitude):
 | 
			
		||||
        iwin = getsignalwin(t, self.getTo(), self.getpwin())
 | 
			
		||||
        xdat = tr.data[iwin]
 | 
			
		||||
 | 
			
		||||
        # fft 
 | 
			
		||||
        # fft
 | 
			
		||||
        fny = tr.stats.sampling_rate / 2
 | 
			
		||||
        l = len(xdat) / tr.stats.sampling_rate
 | 
			
		||||
        n = tr.stats.sampling_rate * l # number of fft bins after Bath
 | 
			
		||||
@ -167,7 +168,7 @@ class DCfc(Magnitude):
 | 
			
		||||
        L = (N - 1) / tr.stats.sampling_rate
 | 
			
		||||
        f = np.arange(0, fny, 1/L)
 | 
			
		||||
 | 
			
		||||
        # remove zero-frequency and frequencies above 
 | 
			
		||||
        # remove zero-frequency and frequencies above
 | 
			
		||||
        # corner frequency of seismometer (assumed
 | 
			
		||||
        # to be 100 Hz)
 | 
			
		||||
        fi = np.where((f >= 1) & (f < 100))
 | 
			
		||||
@ -185,15 +186,15 @@ class DCfc(Magnitude):
 | 
			
		||||
        self.w0 = optspecfit[0]
 | 
			
		||||
        self.fc = optspecfit[1]
 | 
			
		||||
        print ("DCfc: Determined DC-value: %e m/Hz, \n" \
 | 
			
		||||
               "Determined corner frequency: %f Hz" % (self.w0, self.fc)) 
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
               "Determined corner frequency: %f Hz" % (self.w0, self.fc))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        if self.getiplot() > 1:
 | 
			
		||||
            f1 = plt.figure()
 | 
			
		||||
            plt.subplot(2,1,1)
 | 
			
		||||
            # show displacement in mm
 | 
			
		||||
            plt.plot(t, np.multiply(tr, 1000), 'k') 
 | 
			
		||||
            plt.plot(t[iwin], np.multiply(xdat, 1000), 'g') 
 | 
			
		||||
            plt.plot(t, np.multiply(tr, 1000), 'k')
 | 
			
		||||
            plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
 | 
			
		||||
            plt.title('Seismogram and P pulse, station %s' % tr.stats.station)
 | 
			
		||||
            plt.xlabel('Time since %s' % tr.stats.starttime)
 | 
			
		||||
            plt.ylabel('Displacement [mm]')
 | 
			
		||||
@ -214,8 +215,8 @@ class DCfc(Magnitude):
 | 
			
		||||
 | 
			
		||||
def synthsourcespec(f, omega0, fcorner):
 | 
			
		||||
    '''
 | 
			
		||||
    Calculates synthetic source spectrum from given plateau and corner 
 | 
			
		||||
    frequency assuming Akis omega-square model.  
 | 
			
		||||
    Calculates synthetic source spectrum from given plateau and corner
 | 
			
		||||
    frequency assuming Akis omega-square model.
 | 
			
		||||
 | 
			
		||||
    :param: f, frequencies
 | 
			
		||||
    :type:  array
 | 
			
		||||
@ -226,7 +227,7 @@ def synthsourcespec(f, omega0, fcorner):
 | 
			
		||||
    :param: fcorner, corner frequency of source spectrum
 | 
			
		||||
    :type:  float
 | 
			
		||||
    '''
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
    #ssp = omega0 / (pow(2, (1 + f / fcorner)))
 | 
			
		||||
    ssp = omega0 / (1 + pow(2, (f / fcorner)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
"""
 | 
			
		||||
Created Oct/Nov 2014
 | 
			
		||||
@ -120,7 +121,7 @@ class CharacteristicFunction(object):
 | 
			
		||||
 | 
			
		||||
    def getTimeArray(self):
 | 
			
		||||
        incr = self.getIncrement()
 | 
			
		||||
        self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0] 
 | 
			
		||||
        self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
 | 
			
		||||
        return self.TimeArray
 | 
			
		||||
 | 
			
		||||
    def getFnoise(self):
 | 
			
		||||
@ -176,7 +177,7 @@ class CharacteristicFunction(object):
 | 
			
		||||
                h2 = hh[1].copy()
 | 
			
		||||
                hh[0].data = h1.data[int(start):int(stop)]
 | 
			
		||||
                hh[1].data = h2.data[int(start):int(stop)]
 | 
			
		||||
                data = hh 
 | 
			
		||||
                data = hh
 | 
			
		||||
                return data
 | 
			
		||||
            elif len(self.orig_data) == 3:
 | 
			
		||||
                if self.cut[0] == 0 and self.cut[1] == 0:
 | 
			
		||||
@ -197,12 +198,12 @@ class CharacteristicFunction(object):
 | 
			
		||||
                hh[0].data = h1.data[int(start):int(stop)]
 | 
			
		||||
                hh[1].data = h2.data[int(start):int(stop)]
 | 
			
		||||
                hh[2].data = h3.data[int(start):int(stop)]
 | 
			
		||||
                data = hh 
 | 
			
		||||
                data = hh
 | 
			
		||||
                return data
 | 
			
		||||
        else:
 | 
			
		||||
            data = self.orig_data.copy()
 | 
			
		||||
            return data
 | 
			
		||||
       
 | 
			
		||||
 | 
			
		||||
    def calcCF(self, data=None):
 | 
			
		||||
        self.cf = data
 | 
			
		||||
 | 
			
		||||
@ -289,7 +290,7 @@ class HOScf(CharacteristicFunction):
 | 
			
		||||
                LTA[j] = lta / np.power(lta1, 1.5)
 | 
			
		||||
            elif self.getOrder() == 4:
 | 
			
		||||
                LTA[j] = lta / np.power(lta1, 2)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        nn = np.isnan(LTA)
 | 
			
		||||
        if len(nn) > 1:
 | 
			
		||||
           LTA[nn] = 0
 | 
			
		||||
@ -319,7 +320,7 @@ class ARZcf(CharacteristicFunction):
 | 
			
		||||
        cf = np.zeros(len(xnp))
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        arcalci = ldet + self.getOrder() #AR-calculation index
 | 
			
		||||
	for i in range(ldet + self.getOrder(), tend - lpred - 1):
 | 
			
		||||
        for i in range(ldet + self.getOrder(), tend - lpred - 1):
 | 
			
		||||
            if i == arcalci:
 | 
			
		||||
                #determination of AR coefficients
 | 
			
		||||
                #to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
 | 
			
		||||
@ -366,7 +367,7 @@ class ARZcf(CharacteristicFunction):
 | 
			
		||||
        rhs = np.zeros(self.getOrder())
 | 
			
		||||
        for k in range(0, self.getOrder()):
 | 
			
		||||
            for i in range(rind, ldet+1):
 | 
			
		||||
		ki = k + 1
 | 
			
		||||
                ki = k + 1
 | 
			
		||||
                rhs[k] = rhs[k] + data[i] * data[i - ki]
 | 
			
		||||
 | 
			
		||||
        #recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
 | 
			
		||||
@ -386,7 +387,7 @@ class ARZcf(CharacteristicFunction):
 | 
			
		||||
    def arPredZ(self, data, arpara, rind, lpred):
 | 
			
		||||
        '''
 | 
			
		||||
        Function to predict waveform, assuming an autoregressive process of order
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet. After 
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet. After
 | 
			
		||||
        Thomas Meier (CAU), published in Kueperkoch et al. (2012).
 | 
			
		||||
        :param: data, time series to be predicted
 | 
			
		||||
        :type: array
 | 
			
		||||
@ -404,9 +405,9 @@ class ARZcf(CharacteristicFunction):
 | 
			
		||||
        '''
 | 
			
		||||
        #be sure of the summation indeces
 | 
			
		||||
        if rind < len(arpara):
 | 
			
		||||
            rind = len(arpara) 
 | 
			
		||||
            rind = len(arpara)
 | 
			
		||||
        if rind > len(data) - lpred :
 | 
			
		||||
            rind = len(data) - lpred 
 | 
			
		||||
            rind = len(data) - lpred
 | 
			
		||||
        if lpred < 1:
 | 
			
		||||
            lpred = 1
 | 
			
		||||
        if lpred > len(data) - 2:
 | 
			
		||||
@ -426,7 +427,7 @@ class ARHcf(CharacteristicFunction):
 | 
			
		||||
    def calcCF(self, data):
 | 
			
		||||
 | 
			
		||||
        print 'Calculating AR-prediction error from both horizontal traces ...'
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        xnp = self.getDataArray(self.getCut())
 | 
			
		||||
        n0 = np.isnan(xnp[0].data)
 | 
			
		||||
        if len(n0) > 1:
 | 
			
		||||
@ -434,7 +435,7 @@ class ARHcf(CharacteristicFunction):
 | 
			
		||||
        n1 = np.isnan(xnp[1].data)
 | 
			
		||||
        if len(n1) > 1:
 | 
			
		||||
           xnp[1].data[n1] = 0
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        #some parameters needed
 | 
			
		||||
        #add noise to time series
 | 
			
		||||
        xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
 | 
			
		||||
@ -445,7 +446,7 @@ class ARHcf(CharacteristicFunction):
 | 
			
		||||
        #Time2: length of AR-prediction window [sec]
 | 
			
		||||
        ldet = int(round(self.getTime1() / self.getIncrement()))    #length of AR-determination window [samples]
 | 
			
		||||
        lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
 | 
			
		||||
              
 | 
			
		||||
 | 
			
		||||
        cf = np.zeros(len(xenoise))
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        arcalci = lpred + self.getOrder() - 1 #AR-calculation index
 | 
			
		||||
@ -519,7 +520,7 @@ class ARHcf(CharacteristicFunction):
 | 
			
		||||
    def arPredH(self, data, arpara, rind, lpred):
 | 
			
		||||
        '''
 | 
			
		||||
        Function to predict waveform, assuming an autoregressive process of order
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet. After 
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet. After
 | 
			
		||||
        Thomas Meier (CAU), published in Kueperkoch et al. (2012).
 | 
			
		||||
        :param: data, horizontal component seismograms to be predicted
 | 
			
		||||
        :type: structured array
 | 
			
		||||
@ -562,7 +563,7 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
    def calcCF(self, data):
 | 
			
		||||
 | 
			
		||||
        print 'Calculating AR-prediction error from all 3 components ...'
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        xnp = self.getDataArray(self.getCut())
 | 
			
		||||
        n0 = np.isnan(xnp[0].data)
 | 
			
		||||
        if len(n0) > 1:
 | 
			
		||||
@ -573,7 +574,7 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
        n2 = np.isnan(xnp[2].data)
 | 
			
		||||
        if len(n2) > 1:
 | 
			
		||||
           xnp[2].data[n2] = 0
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        #some parameters needed
 | 
			
		||||
        #add noise to time series
 | 
			
		||||
        xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
 | 
			
		||||
@ -585,7 +586,7 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
        #Time2: length of AR-prediction window [sec]
 | 
			
		||||
        ldet = int(round(self.getTime1() / self.getIncrement()))    #length of AR-determination window [samples]
 | 
			
		||||
        lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
 | 
			
		||||
              
 | 
			
		||||
 | 
			
		||||
        cf = np.zeros(len(xenoise))
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        arcalci = ldet + self.getOrder() - 1 #AR-calculation index
 | 
			
		||||
@ -620,7 +621,7 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
        Function to calculate AR parameters arpara after Thomas Meier (CAU), published
 | 
			
		||||
        in  Kueperkoch et al. (2012). This function solves SLE using the Moore-
 | 
			
		||||
        Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
 | 
			
		||||
        AR parameters are calculated based on both horizontal components and vertical 
 | 
			
		||||
        AR parameters are calculated based on both horizontal components and vertical
 | 
			
		||||
        componant.
 | 
			
		||||
        :param: data, horizontal component seismograms to calculate AR parameters from
 | 
			
		||||
        :type: structured array
 | 
			
		||||
@ -662,7 +663,7 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
    def arPred3C(self, data, arpara, rind, lpred):
 | 
			
		||||
        '''
 | 
			
		||||
        Function to predict waveform, assuming an autoregressive process of order
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After 
 | 
			
		||||
        p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
 | 
			
		||||
        Thomas Meier (CAU), published in Kueperkoch et al. (2012).
 | 
			
		||||
        :param: data, horizontal and vertical component seismograms to be predicted
 | 
			
		||||
        :type: structured array
 | 
			
		||||
 | 
			
		||||
@ -312,7 +312,7 @@ class PragPicker(AutoPicking):
 | 
			
		||||
            else:
 | 
			
		||||
                for i in range(1, len(self.cf)):
 | 
			
		||||
                    if i > ismooth:
 | 
			
		||||
                        ii1 = i - ismooth;
 | 
			
		||||
                        ii1 = i - ismooth
 | 
			
		||||
                        cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
 | 
			
		||||
                    else:
 | 
			
		||||
                        cfsmooth[i] = np.mean(self.cf[1 : i])
 | 
			
		||||
 | 
			
		||||
@ -1 +1,2 @@
 | 
			
		||||
#
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
@ -317,29 +317,29 @@ def autopickstation(wfstream, pickparam):
 | 
			
		||||
                data = Data()
 | 
			
		||||
                [corzdat, restflag] = data.restituteWFData(invdir, zdat)
 | 
			
		||||
                if restflag == 1:
 | 
			
		||||
                        # integrate to displacement
 | 
			
		||||
                        corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
 | 
			
		||||
                        # class needs stream object => build it
 | 
			
		||||
                        z_copy = zdat.copy()
 | 
			
		||||
                        z_copy[0].data = corintzdat
 | 
			
		||||
                        # largest detectable period == window length
 | 
			
		||||
                        # after P pulse for calculating source spectrum
 | 
			
		||||
                        winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate  
 | 
			
		||||
                        impickP = mpickP * z_copy[0].stats.sampling_rate
 | 
			
		||||
                        wfzc = z_copy[0].data[impickP : impickP + winzc]
 | 
			
		||||
                        # calculate spectrum using only first cycles of
 | 
			
		||||
                        # waveform after P onset!
 | 
			
		||||
                        zc = crossings_nonzero_all(wfzc)
 | 
			
		||||
                        if np.size(zc) == 0:
 | 
			
		||||
                            print ("Something is wrong with the waveform, " \
 | 
			
		||||
                                   "no zero crossings derived!")
 | 
			
		||||
                            print ("Cannot calculate source spectrum!")
 | 
			
		||||
                        else:
 | 
			
		||||
                            calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
 | 
			
		||||
                	    # calculate source spectrum and get w0 and fc
 | 
			
		||||
                	    specpara = DCfc(z_copy, mpickP, calcwin, iplot)
 | 
			
		||||
                            w0 = specpara.getw0()
 | 
			
		||||
                            fc = specpara.getfc()
 | 
			
		||||
                    # integrate to displacement
 | 
			
		||||
                    corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
 | 
			
		||||
                    # class needs stream object => build it
 | 
			
		||||
                    z_copy = zdat.copy()
 | 
			
		||||
                    z_copy[0].data = corintzdat
 | 
			
		||||
                    # largest detectable period == window length
 | 
			
		||||
                    # after P pulse for calculating source spectrum
 | 
			
		||||
                    winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
 | 
			
		||||
                    impickP = mpickP * z_copy[0].stats.sampling_rate
 | 
			
		||||
                    wfzc = z_copy[0].data[impickP : impickP + winzc]
 | 
			
		||||
                    # calculate spectrum using only first cycles of
 | 
			
		||||
                    # waveform after P onset!
 | 
			
		||||
                    zc = crossings_nonzero_all(wfzc)
 | 
			
		||||
                    if np.size(zc) == 0:
 | 
			
		||||
                        print ("Something is wrong with the waveform, " \
 | 
			
		||||
                               "no zero crossings derived!")
 | 
			
		||||
                        print ("Cannot calculate source spectrum!")
 | 
			
		||||
                    else:
 | 
			
		||||
                        calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
 | 
			
		||||
                    # calculate source spectrum and get w0 and fc
 | 
			
		||||
                    specpara = DCfc(z_copy, mpickP, calcwin, iplot)
 | 
			
		||||
                    w0 = specpara.getw0()
 | 
			
		||||
                    fc = specpara.getfc()
 | 
			
		||||
 | 
			
		||||
                print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, " \
 | 
			
		||||
                       "Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
 | 
			
		||||
@ -560,7 +560,7 @@ def autopickstation(wfstream, pickparam):
 | 
			
		||||
                hdat += ndat
 | 
			
		||||
                h_copy = hdat.copy()
 | 
			
		||||
                [cordat, restflag] = data.restituteWFData(invdir, h_copy)
 | 
			
		||||
                # calculate WA-peak-to-peak amplitude 
 | 
			
		||||
                # calculate WA-peak-to-peak amplitude
 | 
			
		||||
                # using subclass WApp of superclass Magnitude
 | 
			
		||||
                if restflag == 1:
 | 
			
		||||
                    if Sweight < 4:
 | 
			
		||||
@ -591,7 +591,7 @@ def autopickstation(wfstream, pickparam):
 | 
			
		||||
            h_copy = hdat.copy()
 | 
			
		||||
            [cordat, restflag] = data.restituteWFData(invdir, h_copy)
 | 
			
		||||
            if restflag == 1:
 | 
			
		||||
                # calculate WA-peak-to-peak amplitude 
 | 
			
		||||
                # calculate WA-peak-to-peak amplitude
 | 
			
		||||
                # using subclass WApp of superclass Magnitude
 | 
			
		||||
                wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
 | 
			
		||||
                            + sstop)), iplot)
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
#
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
"""
 | 
			
		||||
@ -93,7 +94,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
 | 
			
		||||
        T0 = np.mean(np.diff(zc)) * X[0].stats.delta  # this is half wave length
 | 
			
		||||
        # T0/4 is assumed as time difference between most likely and earliest possible pick!
 | 
			
		||||
        EPick = Pick1 - T0 / 2
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    # get symmetric pick error as mean from earliest and latest possible pick
 | 
			
		||||
    # by weighting latest possible pick two times earliest possible pick
 | 
			
		||||
@ -495,9 +496,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if len(SPtimes) >= 3:
 | 
			
		||||
    	# calculate slope
 | 
			
		||||
    	p1 = np.polyfit(Ppicks, SPtimes, 1)
 | 
			
		||||
    	wdfit = np.polyval(p1, Ppicks)
 | 
			
		||||
        # calculate slope
 | 
			
		||||
        p1 = np.polyfit(Ppicks, SPtimes, 1)
 | 
			
		||||
        wdfit = np.polyval(p1, Ppicks)
 | 
			
		||||
        wfitflag = 0
 | 
			
		||||
 | 
			
		||||
        # calculate vp/vs ratio before check
 | 
			
		||||
@ -534,40 +535,40 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
                pickdic[key]['S']['marked'] = marker
 | 
			
		||||
 | 
			
		||||
        if len(checkedPpicks) >= 3:
 | 
			
		||||
    		# calculate new slope
 | 
			
		||||
    		p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
 | 
			
		||||
    		wdfit2 = np.polyval(p2, checkedPpicks)
 | 
			
		||||
            # calculate new slope
 | 
			
		||||
            p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
 | 
			
		||||
            wdfit2 = np.polyval(p2, checkedPpicks)
 | 
			
		||||
 | 
			
		||||
        	# calculate vp/vs ratio after check
 | 
			
		||||
        	cvpvsr = p2[0] + 1
 | 
			
		||||
        	print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
 | 
			
		||||
                print ("wadatacheck: Skipped %d S pick(s)" % ibad)
 | 
			
		||||
            # calculate vp/vs ratio after check
 | 
			
		||||
            cvpvsr = p2[0] + 1
 | 
			
		||||
            print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
 | 
			
		||||
            print ("wadatacheck: Skipped %d S pick(s)" % ibad)
 | 
			
		||||
        else:
 | 
			
		||||
                print ("###############################################")
 | 
			
		||||
        	print ("wadatacheck: Not enough checked S-P times available!")
 | 
			
		||||
                print ("Skip Wadati check!")
 | 
			
		||||
            print ("###############################################")
 | 
			
		||||
            print ("wadatacheck: Not enough checked S-P times available!")
 | 
			
		||||
            print ("Skip Wadati check!")
 | 
			
		||||
 | 
			
		||||
        checkedonsets = pickdic
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
    	print ("wadaticheck: Not enough S-P times available for reliable regression!")
 | 
			
		||||
        print ("wadaticheck: Not enough S-P times available for reliable regression!")
 | 
			
		||||
        print ("Skip wadati check!")
 | 
			
		||||
        wfitflag = 1
 | 
			
		||||
 | 
			
		||||
    # plot results
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
    	plt.figure(iplot)
 | 
			
		||||
    	f1, = plt.plot(Ppicks, SPtimes, 'ro')
 | 
			
		||||
        plt.figure(iplot)
 | 
			
		||||
        f1, = plt.plot(Ppicks, SPtimes, 'ro')
 | 
			
		||||
        if wfitflag == 0:
 | 
			
		||||
        	f2, = plt.plot(Ppicks, wdfit, 'k')
 | 
			
		||||
                f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
 | 
			
		||||
                f4, = plt.plot(checkedPpicks, wdfit2, 'g')
 | 
			
		||||
                plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
 | 
			
		||||
                          'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
 | 
			
		||||
                plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
 | 
			
		||||
                           'Reliable S-Picks', 'Wadati 2'], loc='best')
 | 
			
		||||
            f2, = plt.plot(Ppicks, wdfit, 'k')
 | 
			
		||||
            f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
 | 
			
		||||
            f4, = plt.plot(checkedPpicks, wdfit2, 'g')
 | 
			
		||||
            plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
 | 
			
		||||
                      'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
 | 
			
		||||
            plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
 | 
			
		||||
                       'Reliable S-Picks', 'Wadati 2'], loc='best')
 | 
			
		||||
        else:
 | 
			
		||||
        	plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
 | 
			
		||||
            plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
 | 
			
		||||
 | 
			
		||||
        plt.ylabel('S-P Times [s]')
 | 
			
		||||
        plt.xlabel('P Times [s]')
 | 
			
		||||
@ -581,8 +582,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
    '''
 | 
			
		||||
    Function to detect spuriously picked noise peaks.
 | 
			
		||||
    Uses RMS trace of all 3 components (if available) to determine, 
 | 
			
		||||
    how many samples [per cent] after P onset are below certain 
 | 
			
		||||
    Uses RMS trace of all 3 components (if available) to determine,
 | 
			
		||||
    how many samples [per cent] after P onset are below certain
 | 
			
		||||
    threshold, calculated from noise level times noise factor.
 | 
			
		||||
 | 
			
		||||
    : param: X, time series (seismogram)
 | 
			
		||||
@ -614,7 +615,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
    print ("Checking signal length ...")
 | 
			
		||||
 | 
			
		||||
    if len(X) > 1:
 | 
			
		||||
    	# all three components available
 | 
			
		||||
        # all three components available
 | 
			
		||||
        # make sure, all components have equal lengths
 | 
			
		||||
        ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
 | 
			
		||||
        x1 = X[0][0:ilen]
 | 
			
		||||
@ -641,7 +642,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
    numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
 | 
			
		||||
 | 
			
		||||
    if numoverthr >= minnum:
 | 
			
		||||
    	print ("checksignallength: Signal reached required length.")
 | 
			
		||||
        print ("checksignallength: Signal reached required length.")
 | 
			
		||||
        returnflag = 1
 | 
			
		||||
    else:
 | 
			
		||||
        print ("checksignallength: Signal shorter than required minimum signal length!")
 | 
			
		||||
@ -651,7 +652,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
 | 
			
		||||
    if iplot == 2:
 | 
			
		||||
        plt.figure(iplot)
 | 
			
		||||
    	p1, = plt.plot(t,rms, 'k')
 | 
			
		||||
        p1, = plt.plot(t,rms, 'k')
 | 
			
		||||
        p2, = plt.plot(t[inoise], rms[inoise], 'c')
 | 
			
		||||
        p3, = plt.plot(t[isignal],rms[isignal], 'r')
 | 
			
		||||
        p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
 | 
			
		||||
@ -731,27 +732,27 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
    badjkmarker = 'badjkcheck'
 | 
			
		||||
    for i in range(0, len(goodstations)):
 | 
			
		||||
        # mark P onset as checked and keep P weight
 | 
			
		||||
    	pickdic[goodstations[i]]['P']['marked'] = goodmarker
 | 
			
		||||
        pickdic[goodstations[i]]['P']['marked'] = goodmarker
 | 
			
		||||
    for i in range(0, len(badstations)):
 | 
			
		||||
       	# mark P onset and downgrade P weight to 9
 | 
			
		||||
       	# (not used anymore)
 | 
			
		||||
    	pickdic[badstations[i]]['P']['marked'] = badmarker
 | 
			
		||||
      	pickdic[badstations[i]]['P']['weight'] = 9
 | 
			
		||||
        # mark P onset and downgrade P weight to 9
 | 
			
		||||
        # (not used anymore)
 | 
			
		||||
        pickdic[badstations[i]]['P']['marked'] = badmarker
 | 
			
		||||
        pickdic[badstations[i]]['P']['weight'] = 9
 | 
			
		||||
    for i in range(0, len(badjkstations)):
 | 
			
		||||
       	# mark P onset and downgrade P weight to 9
 | 
			
		||||
       	# (not used anymore)
 | 
			
		||||
    	pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
 | 
			
		||||
      	pickdic[badjkstations[i]]['P']['weight'] = 9
 | 
			
		||||
        # mark P onset and downgrade P weight to 9
 | 
			
		||||
        # (not used anymore)
 | 
			
		||||
        pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
 | 
			
		||||
        pickdic[badjkstations[i]]['P']['weight'] = 9
 | 
			
		||||
 | 
			
		||||
    checkedonsets = pickdic
 | 
			
		||||
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
    	p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
 | 
			
		||||
        p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
 | 
			
		||||
        p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
 | 
			
		||||
        p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
 | 
			
		||||
                        linewidth=2)
 | 
			
		||||
        for i in range(0, len(Ppicks)):
 | 
			
		||||
        	plt.text(i, Ppicks[i] + 0.2, stations[i])
 | 
			
		||||
            plt.text(i, Ppicks[i] + 0.2, stations[i])
 | 
			
		||||
 | 
			
		||||
        plt.xlabel('Number of P Picks')
 | 
			
		||||
        plt.ylabel('Onset Time [s] from 1.1.1970')
 | 
			
		||||
@ -791,37 +792,37 @@ def jackknife(X, phi, h):
 | 
			
		||||
    g = len(X) / h
 | 
			
		||||
 | 
			
		||||
    if type(g) is not int:
 | 
			
		||||
    	print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
 | 
			
		||||
        print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
 | 
			
		||||
        print ("Choose another size for subgroups!")
 | 
			
		||||
        return PHI_jack, PHI_pseudo, PHI_sub
 | 
			
		||||
    else:
 | 
			
		||||
    	# estimator of undisturbed spot check
 | 
			
		||||
    	if phi == 'MEA':
 | 
			
		||||
        	phi_sc = np.mean(X)
 | 
			
		||||
        # estimator of undisturbed spot check
 | 
			
		||||
        if phi == 'MEA':
 | 
			
		||||
            phi_sc = np.mean(X)
 | 
			
		||||
        elif phi == 'VAR':
 | 
			
		||||
        	phi_sc = np.var(X)
 | 
			
		||||
            phi_sc = np.var(X)
 | 
			
		||||
        elif phi == 'MED':
 | 
			
		||||
        	phi_sc = np.median(X)
 | 
			
		||||
            phi_sc = np.median(X)
 | 
			
		||||
 | 
			
		||||
    	# estimators of subgroups
 | 
			
		||||
        # estimators of subgroups
 | 
			
		||||
        PHI_pseudo = []
 | 
			
		||||
        PHI_sub = []
 | 
			
		||||
        for i in range(0, g - 1):
 | 
			
		||||
        	# subgroup i, remove i-th sample
 | 
			
		||||
                xx = X[:]
 | 
			
		||||
                del xx[i]
 | 
			
		||||
                # calculate estimators of disturbed spot check
 | 
			
		||||
        	if phi == 'MEA':
 | 
			
		||||
                	phi_sub = np.mean(xx)
 | 
			
		||||
                elif phi == 'VAR':
 | 
			
		||||
                	phi_sub = np.var(xx)
 | 
			
		||||
                elif phi == 'MED':
 | 
			
		||||
                	phi_sub = np.median(xx)
 | 
			
		||||
            # subgroup i, remove i-th sample
 | 
			
		||||
            xx = X[:]
 | 
			
		||||
            del xx[i]
 | 
			
		||||
            # calculate estimators of disturbed spot check
 | 
			
		||||
            if phi == 'MEA':
 | 
			
		||||
                phi_sub = np.mean(xx)
 | 
			
		||||
            elif phi == 'VAR':
 | 
			
		||||
                phi_sub = np.var(xx)
 | 
			
		||||
            elif phi == 'MED':
 | 
			
		||||
                phi_sub = np.median(xx)
 | 
			
		||||
 | 
			
		||||
                PHI_sub.append(phi_sub)
 | 
			
		||||
                # pseudo values
 | 
			
		||||
                phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
 | 
			
		||||
                PHI_pseudo.append(phi_pseudo)
 | 
			
		||||
            PHI_sub.append(phi_sub)
 | 
			
		||||
            # pseudo values
 | 
			
		||||
            phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
 | 
			
		||||
            PHI_pseudo.append(phi_pseudo)
 | 
			
		||||
        # jackknife estimator
 | 
			
		||||
        PHI_jack = np.mean(PHI_pseudo)
 | 
			
		||||
 | 
			
		||||
@ -901,17 +902,17 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
 | 
			
		||||
    # vertical P-coda level must exceed horizontal P-coda level
 | 
			
		||||
    # zfac times encodalevel
 | 
			
		||||
    if zcodalevel < minsiglevel:
 | 
			
		||||
    	print ("checkZ4S: Maybe S onset? Skip this P pick!")
 | 
			
		||||
        print ("checkZ4S: Maybe S onset? Skip this P pick!")
 | 
			
		||||
    else:
 | 
			
		||||
        print ("checkZ4S: P onset passes checkZ4S test!")
 | 
			
		||||
        returnflag = 1
 | 
			
		||||
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
    	te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
 | 
			
		||||
        te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
 | 
			
		||||
                  edat[0].stats.delta)
 | 
			
		||||
    	tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
 | 
			
		||||
        tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
 | 
			
		||||
                  ndat[0].stats.delta)
 | 
			
		||||
    	plt.plot(tz, z / max(z), 'k')
 | 
			
		||||
        plt.plot(tz, z / max(z), 'k')
 | 
			
		||||
        plt.plot(tz[isignal], z[isignal] / max(z), 'r')
 | 
			
		||||
        plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
 | 
			
		||||
        plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
 | 
			
		||||
 | 
			
		||||
@ -1 +1 @@
 | 
			
		||||
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
@ -208,8 +208,7 @@ class FilterOptions(object):
 | 
			
		||||
 | 
			
		||||
    def parseFilterOptions(self):
 | 
			
		||||
        if self.getFilterType():
 | 
			
		||||
            robject = {'type':self.getFilterType()}
 | 
			
		||||
            robject['corners'] = self.getOrder()
 | 
			
		||||
            robject = {'type': self.getFilterType(), 'corners': self.getOrder()}
 | 
			
		||||
            if len(self.getFreq()) > 1:
 | 
			
		||||
                robject['freqmin'] = self.getFreq()[0]
 | 
			
		||||
                robject['freqmax'] = self.getFreq()[1]
 | 
			
		||||
 | 
			
		||||
@ -1 +1,2 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
from pylot.core.util.version import get_git_version as _getVersionString
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
'''
 | 
			
		||||
Created on 10.11.2014
 | 
			
		||||
 | 
			
		||||
@ -23,4 +24,4 @@ class Test(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    #import sys;sys.argv = ['', 'Test.testName']
 | 
			
		||||
    unittest.main()
 | 
			
		||||
    unittest.main()
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
'''
 | 
			
		||||
Created on 10.11.2014
 | 
			
		||||
 | 
			
		||||
@ -15,4 +16,4 @@ class Test(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    #import sys;sys.argv = ['', 'Test.testName']
 | 
			
		||||
    unittest.main()
 | 
			
		||||
    unittest.main()
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,4 @@
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
import sys
 | 
			
		||||
from PySide.QtCore import QThread, Signal
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
#
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
import sys, time
 | 
			
		||||
from PySide.QtGui import QApplication
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
import matplotlib
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,5 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
import sys, time
 | 
			
		||||
from PySide.QtGui import QApplication
 | 
			
		||||
@ -8,4 +9,4 @@ app = QApplication(sys.argv)
 | 
			
		||||
 | 
			
		||||
win = PropertiesDlg()
 | 
			
		||||
win.show()
 | 
			
		||||
app.exec_()
 | 
			
		||||
app.exec_()
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,6 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import sys, time
 | 
			
		||||
from PySide.QtGui import QApplication
 | 
			
		||||
@ -9,7 +11,7 @@ dialogs = [FilterOptionsDialog, PropertiesDlg, HelpForm]
 | 
			
		||||
app = QApplication(sys.argv)
 | 
			
		||||
 | 
			
		||||
for dlg in dialogs:
 | 
			
		||||
	win = dlg()
 | 
			
		||||
	win.show()
 | 
			
		||||
	time.sleep(1)
 | 
			
		||||
	win.destroy()
 | 
			
		||||
    win = dlg()
 | 
			
		||||
    win.show()
 | 
			
		||||
    time.sleep(1)
 | 
			
		||||
    win.destroy()
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user