Compare commits
31 Commits
466f19eb2e
...
0.3
| Author | SHA1 | Date | |
|---|---|---|---|
| 9333ebf7f3 | |||
| 8c46b1ed18 | |||
| c743813446 | |||
| 41c9183be3 | |||
| ae6c4966a9 | |||
| e8a516d16b | |||
| f78315dec4 | |||
| 28f75cedcb | |||
| e02b62696d | |||
| e4217f0e30 | |||
| 8f154e70d7 | |||
| 6542b6cc4f | |||
| 5ab6c494c5 | |||
| 3da47c6f6b | |||
| cc7716a2b7 | |||
| 03947d2363 | |||
| e1b0d48527 | |||
| 431dbe8924 | |||
| 63810730e5 | |||
| f2159c47f9 | |||
| d0fbb91ffe | |||
| 424d42aa1c | |||
| 2cea10088d | |||
| 5971508cab | |||
| c765e7c66b | |||
| e6a4ba7ee2 | |||
| 710ea57503 | |||
| 8aaad643ec | |||
| bc808b66c2 | |||
| 472e5b3b9e | |||
|
|
503ea419c4 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -2,3 +2,4 @@
|
||||
*~
|
||||
.idea
|
||||
pylot/RELEASE-VERSION
|
||||
/tests/test_autopicker/dmt_database_test/
|
||||
|
||||
43
PyLoT.py
Executable file → Normal file
43
PyLoT.py
Executable file → Normal file
@@ -716,14 +716,14 @@ class MainWindow(QMainWindow):
|
||||
self.tabs.addTab(wf_tab, 'Waveform Plot')
|
||||
self.tabs.addTab(array_tab, 'Array Map')
|
||||
self.tabs.addTab(events_tab, 'Eventlist')
|
||||
self.tabs.addTab(spectro_tab, 'Spectro')
|
||||
#self.tabs.addTab(spectro_tab, 'Spectro')
|
||||
|
||||
self.wf_layout.addWidget(self.no_data_label)
|
||||
self.wf_layout.addWidget(self.wf_scroll_area)
|
||||
self.wf_scroll_area.setWidgetResizable(True)
|
||||
self.init_array_tab()
|
||||
self.init_event_table()
|
||||
self.init_spectro_tab()
|
||||
#self.init_spectro_tab()
|
||||
self.tabs.setCurrentIndex(0)
|
||||
|
||||
self.eventLabel = QLabel()
|
||||
@@ -1031,22 +1031,23 @@ class MainWindow(QMainWindow):
|
||||
if not fname:
|
||||
return
|
||||
|
||||
qmb = QMessageBox(self, icon=QMessageBox.Question,
|
||||
text='Do you want to overwrite this data?',)
|
||||
overwrite_button = qmb.addButton('Overwrite', QMessageBox.YesRole)
|
||||
merge_button = qmb.addButton('Merge', QMessageBox.NoRole)
|
||||
|
||||
qmb.exec_()
|
||||
|
||||
if qmb.clickedButton() == overwrite_button:
|
||||
merge_strategy = 'Overwrite'
|
||||
elif qmb.clickedButton() == merge_button:
|
||||
merge_strategy = 'Merge'
|
||||
else:
|
||||
return
|
||||
|
||||
if not event:
|
||||
event = self.get_current_event()
|
||||
|
||||
if event.picks:
|
||||
qmb = QMessageBox(self, icon=QMessageBox.Question,
|
||||
text='Do you want to overwrite the data?',)
|
||||
overwrite_button = qmb.addButton('Overwrite', QMessageBox.YesRole)
|
||||
merge_button = qmb.addButton('Merge', QMessageBox.NoRole)
|
||||
qmb.exec_()
|
||||
|
||||
if qmb.clickedButton() == overwrite_button:
|
||||
merge_strategy = 'Overwrite'
|
||||
elif qmb.clickedButton() == merge_button:
|
||||
merge_strategy = 'Merge'
|
||||
else:
|
||||
return
|
||||
|
||||
data = Data(self, event)
|
||||
try:
|
||||
data_new = Data(self, evtdata=str(fname))
|
||||
@@ -1975,7 +1976,6 @@ class MainWindow(QMainWindow):
|
||||
self.dataPlot.activateObspyDMToptions(self.obspy_dmt)
|
||||
if self.obspy_dmt:
|
||||
self.prepareObspyDMT_data(eventpath)
|
||||
self.dataPlot.activateCompareOptions(True)
|
||||
|
||||
def loadWaveformData(self):
|
||||
'''
|
||||
@@ -2152,10 +2152,11 @@ class MainWindow(QMainWindow):
|
||||
self.wf_scroll_area.setVisible(len(plots) > 0)
|
||||
self.no_data_label.setVisible(not len(plots) > 0)
|
||||
for times, data, times_syn, data_syn in plots:
|
||||
self.dataPlot.plotWidget.getPlotItem().plot(times, data,
|
||||
pen=self.dataPlot.pen_linecolor)
|
||||
self.dataPlot.plotWidget.getPlotItem().plot(np.array(times), np.array(data),
|
||||
pen=self.dataPlot.pen_linecolor,
|
||||
skipFiniteCheck=True)
|
||||
if len(data_syn) > 0:
|
||||
self.dataPlot.plotWidget.getPlotItem().plot(times_syn, data_syn,
|
||||
self.dataPlot.plotWidget.getPlotItem().plot(np.array(times_syn), np.array(data_syn),
|
||||
pen=self.dataPlot.pen_linecolor_syn)
|
||||
self.dataPlot.reinitMoveProxy()
|
||||
self.highlight_stations()
|
||||
@@ -3095,7 +3096,7 @@ class MainWindow(QMainWindow):
|
||||
|
||||
if self.pg:
|
||||
if spe:
|
||||
if picks['epp'] and picks['lpp']:
|
||||
if not self.plot_method == 'fast' and picks['epp'] and picks['lpp']:
|
||||
pen = make_pen(picktype, phaseID, 'epp', quality)
|
||||
self.drawnPicks[picktype][station].append(pw.plot([epp, epp], ylims,
|
||||
alpha=.25, pen=pen, name='EPP'))
|
||||
|
||||
28
README.md
28
README.md
@@ -54,33 +54,14 @@ In order to run PyLoT you need to install:
|
||||
|
||||
#### Some handwork:
|
||||
|
||||
PyLoT needs a properties folder on your system to work. It should be situated in your home directory
|
||||
(on Windows usually C:/Users/*username*):
|
||||
|
||||
mkdir ~/.pylot
|
||||
|
||||
In the next step you have to copy some files to this directory:
|
||||
|
||||
*for local distance seismicity*
|
||||
|
||||
cp path-to-pylot/inputs/pylot_local.in ~/.pylot/pylot.in
|
||||
|
||||
*for regional distance seismicity*
|
||||
|
||||
cp path-to-pylot/inputs/pylot_regional.in ~/.pylot/pylot.in
|
||||
|
||||
*for global distance seismicity*
|
||||
|
||||
cp path-to-pylot/inputs/pylot_global.in ~/.pylot/pylot.in
|
||||
|
||||
and some extra information on error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling
|
||||
Some extra information on error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling
|
||||
relation
|
||||
|
||||
cp path-to-pylot/inputs/PILOT_TimeErrors.in path-to-pylot/inputs/richter_scaling.data ~/.pylot/
|
||||
|
||||
You may need to do some modifications to these files. Especially folder names should be reviewed.
|
||||
|
||||
PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10.
|
||||
PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10/11.
|
||||
|
||||
## Release notes
|
||||
|
||||
@@ -89,6 +70,7 @@ PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10.
|
||||
- event organisation in project files and waveform visualisation
|
||||
- consistent manual phase picking through predefined SNR dependant zoom level
|
||||
- consistent automatic phase picking routines using Higher Order Statistics, AIC and Autoregression
|
||||
- pick correlation correction for teleseismic waveforms
|
||||
- interactive tuning of auto-pick parameters
|
||||
- uniform uncertainty estimation from waveform's properties for automatic and manual picks
|
||||
- pdf representation and comparison of picks taking the uncertainty intrinsically into account
|
||||
@@ -97,7 +79,7 @@ PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10.
|
||||
|
||||
#### Known issues:
|
||||
|
||||
We hope to solve these with the next release.
|
||||
Current release is still in development progress and has several issues. We are currently lacking manpower, but hope to assess many of the issues in the near future.
|
||||
|
||||
## Staff
|
||||
|
||||
@@ -110,4 +92,4 @@ Others: A. Bruestle, T. Meier, W. Friederich
|
||||
|
||||
[ObsPy]: http://github.com/obspy/obspy/wiki
|
||||
|
||||
August 2024
|
||||
September 2024
|
||||
15
autoPyLoT.py
15
autoPyLoT.py
@@ -184,15 +184,15 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
||||
if not input_dict:
|
||||
# started in production mode
|
||||
datapath = datastructure.expandDataPath()
|
||||
if fnames == 'None' and parameter['eventID'] == '*':
|
||||
if fnames in [None, 'None'] and parameter['eventID'] == '*':
|
||||
# multiple event processing
|
||||
# read each event in database
|
||||
events = [event for event in glob.glob(os.path.join(datapath, '*')) if
|
||||
(os.path.isdir(event) and not event.endswith('EVENTS-INFO'))]
|
||||
elif fnames == 'None' and parameter['eventID'] != '*' and not type(parameter['eventID']) == list:
|
||||
elif fnames in [None, 'None'] and parameter['eventID'] != '*' and not type(parameter['eventID']) == list:
|
||||
# single event processing
|
||||
events = glob.glob(os.path.join(datapath, parameter['eventID']))
|
||||
elif fnames == 'None' and type(parameter['eventID']) == list:
|
||||
elif fnames in [None, 'None'] and type(parameter['eventID']) == list:
|
||||
# multiple event processing
|
||||
events = []
|
||||
for eventID in parameter['eventID']:
|
||||
@@ -234,12 +234,15 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
||||
data.get_evt_data().path = eventpath
|
||||
print('Reading event data from filename {}...'.format(filename))
|
||||
except Exception as e:
|
||||
print('Could not read event from file {}: {}'.format(filename, e))
|
||||
if type(e) == FileNotFoundError:
|
||||
print('Creating new event file.')
|
||||
else:
|
||||
print('Could not read event from file {}: {}'.format(filename, e))
|
||||
data = Data()
|
||||
pylot_event = Event(eventpath) # event should be path to event directory
|
||||
data.setEvtData(pylot_event)
|
||||
if fnames == 'None':
|
||||
data.setWFData(glob.glob(os.path.join(datapath, event_datapath, '*')))
|
||||
if fnames in [None, 'None']:
|
||||
data.setWFData(glob.glob(os.path.join(event_datapath, '*')))
|
||||
# the following is necessary because within
|
||||
# multiple event processing no event ID is provided
|
||||
# in autopylot.in
|
||||
|
||||
@@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
1150.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.05 0.5 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.05 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
||||
@@ -40,7 +40,8 @@ local #extent# %extent of a
|
||||
-0.5 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
|
||||
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
2.0 20.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
2.0 30.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
2.0 10.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
||||
@@ -40,7 +40,8 @@ local #extent# %extent of a
|
||||
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
|
||||
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
2.0 10.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
2.0 12.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
2.0 8.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
||||
@@ -262,6 +262,10 @@ class AutopickStation(object):
|
||||
self.metadata = metadata
|
||||
self.origin = origin
|
||||
|
||||
# initialize TauPy pick estimates
|
||||
self.estFirstP = None
|
||||
self.estFirstS = None
|
||||
|
||||
# initialize picking results
|
||||
self.p_results = PickingResults()
|
||||
self.s_results = PickingResults()
|
||||
@@ -443,15 +447,15 @@ class AutopickStation(object):
|
||||
for arr in arrivals:
|
||||
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
||||
# get first P and S onsets from arrivals list
|
||||
estFirstP = 0
|
||||
estFirstS = 0
|
||||
arrival_time_p = 0
|
||||
arrival_time_s = 0
|
||||
if len(phases['P']) > 0:
|
||||
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
||||
arrP, arrival_time_p = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
||||
if len(phases['S']) > 0:
|
||||
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
||||
arrS, arrival_time_s = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
||||
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
||||
' origin time using TauPy'.format(estFirstP, estFirstS))
|
||||
return estFirstP, estFirstS
|
||||
' origin time using TauPy'.format(arrival_time_p, arrival_time_s))
|
||||
return arrival_time_p, arrival_time_s
|
||||
|
||||
def exit_taupy():
|
||||
"""If taupy failed to calculate theoretical starttimes, picking continues.
|
||||
@@ -477,10 +481,13 @@ class AutopickStation(object):
|
||||
raise AttributeError('No source origins given!')
|
||||
|
||||
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
|
||||
estFirstP, estFirstS = first_PS_onsets(arrivals)
|
||||
arrival_P, arrival_S = first_PS_onsets(arrivals)
|
||||
|
||||
self.estFirstP = (self.origin[0].time + arrival_P) - self.ztrace.stats.starttime
|
||||
|
||||
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
||||
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
||||
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
||||
self.pickparams["pstart"] += self.estFirstP
|
||||
self.pickparams["pstop"] += self.estFirstP
|
||||
print('autopick: CF calculation times respectively:'
|
||||
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
|
||||
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
|
||||
@@ -491,9 +498,10 @@ class AutopickStation(object):
|
||||
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
|
||||
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
|
||||
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
|
||||
self.estFirstS = (self.origin[0].time + arrival_S) - trace_s_start
|
||||
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
|
||||
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start
|
||||
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start
|
||||
self.pickparams["sstart"] += self.estFirstS
|
||||
self.pickparams["sstop"] += self.estFirstS
|
||||
print('autopick: CF calculation times respectively:'
|
||||
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
|
||||
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
|
||||
@@ -609,6 +617,12 @@ class AutopickStation(object):
|
||||
# plot tapered trace filtered with bpz2 filter settings
|
||||
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
|
||||
label='Data')
|
||||
# plot pickwindows for P
|
||||
pstart, pstop = self.pickparams['pstart'], self.pickparams['pstop']
|
||||
if pstart is not None and pstop is not None:
|
||||
ax1.axvspan(pstart, pstop, color='r', alpha=0.1, zorder=0, label='P window')
|
||||
if self.estFirstP is not None:
|
||||
ax1.axvline(self.estFirstP, ls='dashed', color='r', alpha=0.4, label='TauPy estimate')
|
||||
if self.p_results.weight < 4:
|
||||
# plot CF of initial onset (HOScf or ARZcf)
|
||||
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
|
||||
@@ -713,6 +727,15 @@ class AutopickStation(object):
|
||||
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
||||
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
||||
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
||||
|
||||
# plot pickwindows for S
|
||||
sstart, sstop = self.pickparams['sstart'], self.pickparams['sstop']
|
||||
if sstart is not None and sstop is not None:
|
||||
for axis in [ax2, ax3]:
|
||||
axis.axvspan(sstart, sstop, color='b', alpha=0.1, zorder=0, label='S window')
|
||||
if self.estFirstS is not None:
|
||||
axis.axvline(self.estFirstS, ls='dashed', color='b', alpha=0.4, label='TauPy estimate')
|
||||
|
||||
ax3.legend(loc=1)
|
||||
ax3.set_yticks([])
|
||||
ax3.set_ylim([-1.5, 1.5])
|
||||
@@ -835,14 +858,21 @@ class AutopickStation(object):
|
||||
self.cf1 = None
|
||||
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
|
||||
' is corrupted'.format(self.pickparams["algoP"])
|
||||
# get the original waveform stream from first CF class cut to identical length as CF for plotting
|
||||
cut_ogstream = self.cf1.getDataArray(self.cf1.getCut())
|
||||
|
||||
# MP: Rename to cf_stream for further use of z_copy and to prevent chaos when z_copy suddenly becomes a cf
|
||||
# stream and later again a waveform stream
|
||||
cf_stream = z_copy.copy()
|
||||
cf_stream[0].data = self.cf1.getCF()
|
||||
|
||||
# calculate AIC cf from first cf (either HOS or ARZ)
|
||||
z_copy[0].data = self.cf1.getCF()
|
||||
aiccf = AICcf(z_copy, cuttimes)
|
||||
aiccf = AICcf(cf_stream, cuttimes)
|
||||
# get preliminary onset time from AIC-CF
|
||||
self.set_current_figure('aicFig')
|
||||
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
|
||||
linecolor=self.current_linecolor)
|
||||
linecolor=self.current_linecolor, ogstream=cut_ogstream)
|
||||
# save aicpick for plotting later
|
||||
self.p_data.aicpick = aicpick
|
||||
# add pstart and pstop to aic plot
|
||||
@@ -855,7 +885,7 @@ class AutopickStation(object):
|
||||
label='P stop')
|
||||
ax.legend(loc=1)
|
||||
|
||||
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
|
||||
Pflag = self._pick_p_quality_control(aicpick, cf_stream, tr_filt)
|
||||
# go on with processing if AIC onset passes quality control
|
||||
slope = aicpick.getSlope()
|
||||
if not slope: slope = 0
|
||||
@@ -894,7 +924,7 @@ class AutopickStation(object):
|
||||
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||
self.pickparams["ausP"],
|
||||
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
|
||||
self.current_linecolor)
|
||||
self.current_linecolor, ogstream=cut_ogstream)
|
||||
# save PragPicker result for plotting
|
||||
self.p_data.refPpick = refPpick
|
||||
self.p_results.mpp = refPpick.getpick()
|
||||
@@ -1146,11 +1176,14 @@ class AutopickStation(object):
|
||||
# calculate AIC cf
|
||||
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
|
||||
|
||||
# get the original waveform stream cut to identical length as CF for plotting
|
||||
ogstream = haiccf.getDataArray(haiccf.getCut())
|
||||
|
||||
# get preliminary onset time from AIC cf
|
||||
self.set_current_figure('aicARHfig')
|
||||
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
|
||||
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
|
||||
linecolor=self.current_linecolor)
|
||||
linecolor=self.current_linecolor, ogstream=ogstream)
|
||||
# save pick for later plotting
|
||||
self.aicarhpick = aicarhpick
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@ class CharacteristicFunction(object):
|
||||
self.setOrder(order)
|
||||
self.setFnoise(fnoise)
|
||||
self.setARdetStep(t2)
|
||||
self.calcCF(self.getDataArray())
|
||||
self.calcCF()
|
||||
self.arpara = np.array([])
|
||||
self.xpred = np.array([])
|
||||
|
||||
@@ -212,17 +212,15 @@ class CharacteristicFunction(object):
|
||||
data = self.orig_data.copy()
|
||||
return data
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
def calcCF(self):
|
||||
pass
|
||||
|
||||
|
||||
class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate the Akaike Information Criterion (AIC) after Maeda (1985).
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: AIC function
|
||||
:rtype:
|
||||
"""
|
||||
@@ -231,7 +229,7 @@ class AICcf(CharacteristicFunction):
|
||||
ind = np.where(~np.isnan(xnp))[0]
|
||||
if ind.size:
|
||||
xnp[:ind[0]] = xnp[ind[0]]
|
||||
xnp = signal.tukey(len(xnp), alpha=0.05) * xnp
|
||||
xnp = tukey(len(xnp), alpha=0.05) * xnp
|
||||
xnp = xnp - np.mean(xnp)
|
||||
datlen = len(xnp)
|
||||
k = np.arange(1, datlen)
|
||||
@@ -260,13 +258,11 @@ class HOScf(CharacteristicFunction):
|
||||
"""
|
||||
super(HOScf, self).__init__(data, cut, pickparams["tlta"], pickparams["hosorder"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||
(statistics of order 4), using one long moving window, as published
|
||||
in Kueperkoch et al. (2010), or order 2, i.e. STA/LTA.
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: HOS cf
|
||||
:rtype:
|
||||
"""
|
||||
@@ -281,47 +277,28 @@ class HOScf(CharacteristicFunction):
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 2: # this is variance, used for STA/LTA processing
|
||||
y = np.power(xnp, 2)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
# Initialisation
|
||||
# t2: long term moving window
|
||||
ilta = int(round(self.getTime2() / self.getIncrement()))
|
||||
ista = int(round((self.getTime2() / 10) / self.getIncrement())) # TODO: still hard coded!!
|
||||
lta = y[0]
|
||||
lta1 = y1[0]
|
||||
sta = y[0]
|
||||
# moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
STA = np.zeros(len(xnp))
|
||||
for j in range(0, len(xnp)):
|
||||
if j < 4:
|
||||
LTA[j] = 0
|
||||
STA[j] = 0
|
||||
elif j <= ista and self.getOrder() == 2:
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] + sta * (j - 1)) / j
|
||||
# elif j < 4:
|
||||
elif j <= ilta:
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] - y[j - ista]) / ista + sta
|
||||
else:
|
||||
lta = (y[j] - y[j - ilta]) / ilta + lta
|
||||
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] - y[j - ista]) / ista + sta
|
||||
# define LTA
|
||||
if self.getOrder() == 3:
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
LTA[j] = lta / np.power(lta1, 2)
|
||||
else:
|
||||
LTA[j] = lta
|
||||
STA[j] = sta
|
||||
|
||||
# remove NaN's with first not-NaN-value,
|
||||
# so autopicker doesnt pick discontinuity at start of the trace
|
||||
@@ -330,10 +307,7 @@ class HOScf(CharacteristicFunction):
|
||||
first = ind[0]
|
||||
LTA[:first] = LTA[first]
|
||||
|
||||
if self.getOrder() > 2:
|
||||
self.cf = LTA
|
||||
else: # order 2 means STA/LTA!
|
||||
self.cf = STA / LTA
|
||||
self.cf = LTA
|
||||
self.xcf = x
|
||||
|
||||
|
||||
@@ -343,12 +317,10 @@ class ARZcf(CharacteristicFunction):
|
||||
super(ARZcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Parorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
function used to calculate the AR prediction error from a single vertical trace. Can be used to pick
|
||||
P onsets.
|
||||
:param data:
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARZ cf
|
||||
:rtype:
|
||||
"""
|
||||
@@ -479,14 +451,12 @@ class ARHcf(CharacteristicFunction):
|
||||
super(ARHcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
both horizontal traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function.
|
||||
:param data: wavefor stream
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARH cf
|
||||
:rtype:
|
||||
"""
|
||||
@@ -635,14 +605,12 @@ class AR3Ccf(CharacteristicFunction):
|
||||
super(AR3Ccf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
all three traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function
|
||||
:param data: stream holding all three traces
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: AR3C cf
|
||||
:rtype:
|
||||
"""
|
||||
|
||||
@@ -37,7 +37,8 @@ class AutoPicker(object):
|
||||
|
||||
warnings.simplefilter('ignore')
|
||||
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None,
|
||||
fig=None, linecolor='k', ogstream=None):
|
||||
"""
|
||||
Create AutoPicker object
|
||||
:param cf: characteristic function, on which the picking algorithm is applied
|
||||
@@ -59,12 +60,15 @@ class AutoPicker(object):
|
||||
:type fig: `~matplotlib.figure.Figure`
|
||||
:param linecolor: matplotlib line color string
|
||||
:type linecolor: str
|
||||
:param ogstream: original stream (waveform), e.g. for plotting purposes
|
||||
:type ogstream: `~obspy.core.stream.Stream`
|
||||
"""
|
||||
|
||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||
self._linecolor = linecolor
|
||||
self._pickcolor_p = 'b'
|
||||
self.cf = cf.getCF()
|
||||
self.ogstream = ogstream
|
||||
self.Tcf = cf.getTimeArray()
|
||||
self.Data = cf.getXCF()
|
||||
self.dt = cf.getIncrement()
|
||||
@@ -173,7 +177,7 @@ class AICPicker(AutoPicker):
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
# taper AIC-CF to get rid of side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
# smooth AIC-CF
|
||||
@@ -316,16 +320,7 @@ class AICPicker(AutoPicker):
|
||||
plt.close(fig)
|
||||
return
|
||||
iislope = islope[0][0:imax + 1]
|
||||
# MP MP change slope calculation
|
||||
# get all maxima of aicsmooth
|
||||
iaicmaxima = argrelmax(aicsmooth)[0]
|
||||
# get first index of maximum after pickindex (indices saved in iaicmaxima)
|
||||
aicmax = iaicmaxima[np.where(iaicmaxima > pickindex)[0]]
|
||||
if len(aicmax) > 0:
|
||||
iaicmax = aicmax[0]
|
||||
else:
|
||||
iaicmax = -1
|
||||
dataslope = aicsmooth[pickindex: iaicmax]
|
||||
dataslope = self.Data[0].data[iislope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
try:
|
||||
@@ -336,7 +331,7 @@ class AICPicker(AutoPicker):
|
||||
else:
|
||||
self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
|
||||
# normalize slope to maximum of cf to make it unit independent
|
||||
self.slope /= aicsmooth[iaicmax]
|
||||
self.slope /= self.Data[0].data[icfmax]
|
||||
except Exception as e:
|
||||
print("AICPicker: Problems with data fitting! {}".format(e))
|
||||
|
||||
@@ -356,6 +351,12 @@ class AICPicker(AutoPicker):
|
||||
self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
|
||||
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
||||
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
||||
# plot the original waveform also for evaluation of the CF and pick
|
||||
if self.ogstream:
|
||||
data = self.ogstream[0].data
|
||||
if len(data) == len(self.Tcf):
|
||||
ax1.plot(self.Tcf, 0.5 * data / max(data), 'k', label='Seismogram', alpha=0.3, zorder=0,
|
||||
lw=0.5)
|
||||
if self.Pick is not None:
|
||||
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
||||
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
@@ -376,7 +377,7 @@ class AICPicker(AutoPicker):
|
||||
label='Signal Window')
|
||||
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
|
||||
label='Slope Window')
|
||||
ax2.plot(self.Tcf[pickindex: iaicmax], datafit, 'g', linewidth=2,
|
||||
ax2.plot(self.Tcf[iislope], datafit, 'g', linewidth=2,
|
||||
label='Slope') # MP MP changed temporarily!
|
||||
|
||||
if self.slope is not None:
|
||||
|
||||
@@ -15,7 +15,7 @@ import numpy as np
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
from scipy.signal import argrelmax
|
||||
|
||||
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents
|
||||
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents, common_range
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=0, verbosity=1, fig=None, linecolor='k'):
|
||||
@@ -828,14 +828,22 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
if len(X) > 1:
|
||||
# all three components available
|
||||
# make sure, all components have equal lengths
|
||||
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||
x1 = X[0][0:ilen]
|
||||
x2 = X[1][0:ilen]
|
||||
x3 = X[2][0:ilen]
|
||||
earliest_starttime = min(tr.stats.starttime for tr in X)
|
||||
cuttimes = common_range(X)
|
||||
X = X.slice(cuttimes[0], cuttimes[1])
|
||||
x1, x2, x3 = X[:3]
|
||||
|
||||
if not (len(x1) == len(x2) == len(x3)):
|
||||
raise PickingFailedException('checksignallength: unequal lengths of components!')
|
||||
|
||||
# get RMS trace
|
||||
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
||||
ilen = len(rms)
|
||||
dt = earliest_starttime - X[0].stats.starttime
|
||||
pick -= dt
|
||||
else:
|
||||
x1 = X[0].data
|
||||
x2 = x3 = None
|
||||
ilen = len(x1)
|
||||
rms = abs(x1)
|
||||
|
||||
@@ -874,6 +882,10 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
fig._tight = True
|
||||
ax = fig.add_subplot(111)
|
||||
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
|
||||
ax.plot(t, x1, 'k', alpha=0.3, lw=0.3, zorder=0)
|
||||
if x2 is not None and x3 is not None:
|
||||
ax.plot(t, x2, 'r', alpha=0.3, lw=0.3, zorder=0)
|
||||
ax.plot(t, x3, 'g', alpha=0.3, lw=0.3, zorder=0)
|
||||
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
||||
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
|
||||
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
||||
@@ -883,6 +895,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
ax.set_ylabel('Counts')
|
||||
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||
ax.set_xlim(pickparams["pstart"], pickparams["pstop"])
|
||||
ax.set_yticks([])
|
||||
if plt_flag == 1:
|
||||
fig.show()
|
||||
|
||||
@@ -14,6 +14,8 @@ import obspy
|
||||
from PySide2 import QtWidgets, QtGui
|
||||
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
|
||||
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||
from obspy import UTCDateTime
|
||||
|
||||
from pylot.core.util.utils import identifyPhaseID
|
||||
from scipy.interpolate import griddata
|
||||
|
||||
@@ -60,6 +62,7 @@ class Array_map(QtWidgets.QWidget):
|
||||
self.parameter = parameter if parameter else parent._inputs
|
||||
|
||||
self.picks_rel = {}
|
||||
self.picks_rel_mean_corrected = {}
|
||||
self.marked_stations = []
|
||||
self.highlighted_stations = []
|
||||
|
||||
@@ -106,6 +109,7 @@ class Array_map(QtWidgets.QWidget):
|
||||
self.map_reset_button = QtWidgets.QPushButton('Reset Map View')
|
||||
self.save_map_button = QtWidgets.QPushButton('Save Map')
|
||||
self.go2eq_button = QtWidgets.QPushButton('Go to Event Location')
|
||||
self.subtract_mean_cb = QtWidgets.QCheckBox('Subtract mean')
|
||||
|
||||
self.main_box = QtWidgets.QVBoxLayout()
|
||||
self.setLayout(self.main_box)
|
||||
@@ -152,6 +156,7 @@ class Array_map(QtWidgets.QWidget):
|
||||
self.bot_row.addWidget(self.map_reset_button, 2)
|
||||
self.bot_row.addWidget(self.go2eq_button, 2)
|
||||
self.bot_row.addWidget(self.save_map_button, 2)
|
||||
self.bot_row.addWidget(self.subtract_mean_cb, 0)
|
||||
self.bot_row.addWidget(self.status_label, 5)
|
||||
|
||||
def init_colormap(self):
|
||||
@@ -212,6 +217,7 @@ class Array_map(QtWidgets.QWidget):
|
||||
self.map_reset_button.clicked.connect(self.org_map_view)
|
||||
self.go2eq_button.clicked.connect(self.go2eq)
|
||||
self.save_map_button.clicked.connect(self.saveFigure)
|
||||
self.subtract_mean_cb.stateChanged.connect(self.toggle_subtract_mean)
|
||||
|
||||
self.plotWidget.mpl_connect('motion_notify_event', self.mouse_moved)
|
||||
self.plotWidget.mpl_connect('scroll_event', self.mouse_scroll)
|
||||
@@ -368,12 +374,6 @@ class Array_map(QtWidgets.QWidget):
|
||||
def get_max_from_stations(self, key):
|
||||
return self._from_dict(max, key)
|
||||
|
||||
def get_min_from_picks(self):
|
||||
return min(self.picks_rel.values())
|
||||
|
||||
def get_max_from_picks(self):
|
||||
return max(self.picks_rel.values())
|
||||
|
||||
def current_picks_dict(self):
|
||||
picktype = self.comboBox_am.currentText().split(' ')[0]
|
||||
auto_manu = {'auto': self.autopicks_dict,
|
||||
@@ -418,17 +418,17 @@ class Array_map(QtWidgets.QWidget):
|
||||
print('Cannot display pick for station {}. Reason: {}'.format(station_name, e))
|
||||
return picks, uncertainties
|
||||
|
||||
def get_picks_rel(picks):
|
||||
def get_picks_rel(picks, func=min):
|
||||
picks_rel = {}
|
||||
picks_utc = []
|
||||
for pick in picks.values():
|
||||
if type(pick) is obspy.core.utcdatetime.UTCDateTime:
|
||||
picks_utc.append(pick)
|
||||
if type(pick) is UTCDateTime:
|
||||
picks_utc.append(pick.timestamp)
|
||||
if picks_utc:
|
||||
self._earliest_picktime = min(picks_utc)
|
||||
self._reference_picktime = UTCDateTime(func(picks_utc))
|
||||
for st_id, pick in picks.items():
|
||||
if type(pick) is obspy.core.utcdatetime.UTCDateTime:
|
||||
pick -= self._earliest_picktime
|
||||
if type(pick) is UTCDateTime:
|
||||
pick -= self._reference_picktime
|
||||
picks_rel[st_id] = pick
|
||||
return picks_rel
|
||||
|
||||
@@ -437,6 +437,15 @@ class Array_map(QtWidgets.QWidget):
|
||||
|
||||
self.picks, self.uncertainties = get_picks(self.stations_dict)
|
||||
self.picks_rel = get_picks_rel(self.picks)
|
||||
self.picks_rel_mean_corrected = get_picks_rel_mean_corr(self.picks)
|
||||
|
||||
def toggle_subtract_mean(self):
|
||||
if self.subtract_mean_cb.isChecked():
|
||||
cmap = 'seismic'
|
||||
else:
|
||||
cmap = 'viridis'
|
||||
self.cmaps_box.setCurrentIndex(self.cmaps_box.findText(cmap))
|
||||
self._refresh_drawings()
|
||||
|
||||
def init_lat_lon_dimensions(self):
|
||||
# init minimum and maximum lon and lat dimensions
|
||||
@@ -467,11 +476,12 @@ class Array_map(QtWidgets.QWidget):
|
||||
return stations, latitudes, longitudes
|
||||
|
||||
def get_picks_lat_lon(self):
|
||||
picks_rel = self.picks_rel_mean_corrected if self.subtract_mean_cb.isChecked() else self.picks_rel
|
||||
picks = []
|
||||
uncertainties = []
|
||||
latitudes = []
|
||||
longitudes = []
|
||||
for st_id, pick in self.picks_rel.items():
|
||||
for st_id, pick in picks_rel.items():
|
||||
picks.append(pick)
|
||||
uncertainties.append(self.uncertainties.get(st_id))
|
||||
latitudes.append(self.stations_dict[st_id]['latitude'])
|
||||
@@ -538,13 +548,20 @@ class Array_map(QtWidgets.QWidget):
|
||||
print(message, e)
|
||||
print(traceback.format_exc())
|
||||
|
||||
def draw_contour_filled(self, nlevel=50):
|
||||
levels = np.linspace(self.get_min_from_picks(), self.get_max_from_picks(), nlevel)
|
||||
def draw_contour_filled(self, nlevel=51):
|
||||
if self.subtract_mean_cb.isChecked():
|
||||
abs_max = self.get_residuals_absmax()
|
||||
levels = np.linspace(-abs_max, abs_max, nlevel)
|
||||
else:
|
||||
levels = np.linspace(min(self.picks_rel.values()), max(self.picks_rel.values()), nlevel)
|
||||
|
||||
self.contourf = self.ax.contourf(self.longrid, self.latgrid, self.picksgrid_active, levels,
|
||||
linewidths=self.linewidth * 5, transform=ccrs.PlateCarree(),
|
||||
alpha=0.4, zorder=8, cmap=self.get_colormap())
|
||||
|
||||
def get_residuals_absmax(self):
|
||||
return np.max(np.absolute(list(self.picks_rel_mean_corrected.values())))
|
||||
|
||||
def get_colormap(self):
|
||||
return plt.get_cmap(self.cmaps_box.currentText())
|
||||
|
||||
@@ -575,7 +592,12 @@ class Array_map(QtWidgets.QWidget):
|
||||
for uncertainty in uncertainties])
|
||||
|
||||
cmap = self.get_colormap()
|
||||
self.sc_picked = self.ax.scatter(lons, lats, s=sizes, edgecolors='white', cmap=cmap,
|
||||
|
||||
vmin = vmax = None
|
||||
if self.subtract_mean_cb.isChecked():
|
||||
vmin, vmax = -self.get_residuals_absmax(), self.get_residuals_absmax()
|
||||
|
||||
self.sc_picked = self.ax.scatter(lons, lats, s=sizes, edgecolors='white', cmap=cmap, vmin=vmin, vmax=vmax,
|
||||
c=picks, zorder=11, label='Picked', transform=ccrs.PlateCarree())
|
||||
|
||||
def annotate_ax(self):
|
||||
@@ -652,7 +674,9 @@ class Array_map(QtWidgets.QWidget):
|
||||
if picks_available:
|
||||
self.scatter_picked_stations()
|
||||
if hasattr(self, 'sc_picked'):
|
||||
self.cbar = self.add_cbar(label='Time relative to first onset ({}) [s]'.format(self._earliest_picktime))
|
||||
self.cbar = self.add_cbar(
|
||||
label='Time relative to reference onset ({}) [s]'.format(self._reference_picktime)
|
||||
)
|
||||
self.comboBox_phase.setEnabled(True)
|
||||
else:
|
||||
self.comboBox_phase.setEnabled(False)
|
||||
|
||||
@@ -27,6 +27,10 @@ class Metadata(object):
|
||||
# saves which metadata files are from obspy dmt
|
||||
self.obspy_dmt_invs = []
|
||||
if inventory:
|
||||
# make sure that no accidental backslashes mess up the path
|
||||
if isinstance(inventory, str):
|
||||
inventory = inventory.replace('\\', '/')
|
||||
inventory = os.path.abspath(inventory)
|
||||
if os.path.isdir(inventory):
|
||||
self.add_inventory(inventory)
|
||||
if os.path.isfile(inventory):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
from functools import lru_cache
|
||||
|
||||
try:
|
||||
import pyqtgraph as pg
|
||||
@@ -25,14 +26,14 @@ def pick_linestyle_pg(picktype, key):
|
||||
:return: Qt line style parameters
|
||||
:rtype:
|
||||
"""
|
||||
linestyles_manu = {'mpp': (QtCore.Qt.SolidLine, 2.),
|
||||
'epp': (QtCore.Qt.DashLine, 1.),
|
||||
'lpp': (QtCore.Qt.DashLine, 1.),
|
||||
'spe': (QtCore.Qt.DashLine, 1.)}
|
||||
linestyles_auto = {'mpp': (QtCore.Qt.DotLine, 2.),
|
||||
'epp': (QtCore.Qt.DashDotLine, 1.),
|
||||
'lpp': (QtCore.Qt.DashDotLine, 1.),
|
||||
'spe': (QtCore.Qt.DashDotLine, 1.)}
|
||||
linestyles_manu = {'mpp': (QtCore.Qt.SolidLine, 2),
|
||||
'epp': (QtCore.Qt.DashLine, 1),
|
||||
'lpp': (QtCore.Qt.DashLine, 1),
|
||||
'spe': (QtCore.Qt.DashLine, 1)}
|
||||
linestyles_auto = {'mpp': (QtCore.Qt.DotLine, 2),
|
||||
'epp': (QtCore.Qt.DashDotLine, 1),
|
||||
'lpp': (QtCore.Qt.DashDotLine, 1),
|
||||
'spe': (QtCore.Qt.DashDotLine, 1)}
|
||||
linestyles = {'manual': linestyles_manu,
|
||||
'auto': linestyles_auto}
|
||||
return linestyles[picktype][key]
|
||||
@@ -80,6 +81,7 @@ def which(program, parameter):
|
||||
return None
|
||||
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def make_pen(picktype, phase, key, quality):
|
||||
"""
|
||||
Make PyQtGraph.QPen
|
||||
|
||||
@@ -1076,7 +1076,7 @@ def check4rotated(data, metadata=None, verbosity=1):
|
||||
return wfs_in
|
||||
|
||||
# check metadata quality
|
||||
t_start = full_range(wfs_in)
|
||||
t_start = full_range(wfs_in)[0]
|
||||
try:
|
||||
azimuths = []
|
||||
dips = []
|
||||
|
||||
18634
tests/test_autopicker/PyLoT_20171010_063224.a_autopylot.xml
Normal file
18634
tests/test_autopicker/PyLoT_20171010_063224.a_autopylot.xml
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
18634
tests/test_autopicker/PyLoT_20171010_063224.a_saved_from_GUI.xml
Normal file
18634
tests/test_autopicker/PyLoT_20171010_063224.a_saved_from_GUI.xml
Normal file
File diff suppressed because it is too large
Load Diff
@@ -4,10 +4,8 @@
|
||||
%Parameters are optimized for %extent data sets!
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
#main settings#
|
||||
#rootpath# %project path
|
||||
#datapath# %data path
|
||||
#database# %name of data base
|
||||
20171010_063224.a #eventID# %event ID for single event processing (* for all events found in database)
|
||||
dmt_database_test #datapath# %data path
|
||||
20171010_063224.a #eventID# %event ID for single event processing (* for all events found in database)
|
||||
#invdir# %full path to inventory or dataless-seed file
|
||||
PILOT #datastructure# %choose data structure
|
||||
True #apverbose# %choose 'True' or 'False' for terminal output
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from obspy import read_events
|
||||
|
||||
from autoPyLoT import autoPyLoT
|
||||
|
||||
|
||||
@@ -8,7 +10,11 @@ class TestAutopickerGlobal():
|
||||
def init(self):
|
||||
self.params_infile = 'pylot_alparray_mantle_corr_stack_0.03-0.5.in'
|
||||
self.test_event_dir = 'dmt_database_test'
|
||||
self.fname_outfile_xml = os.path.join(
|
||||
self.test_event_dir, '20171010_063224.a', 'PyLoT_20171010_063224.a_autopylot.xml'
|
||||
)
|
||||
|
||||
# check if the input files exist
|
||||
if not os.path.isfile(self.params_infile):
|
||||
print(f'Test input file {os.path.abspath(self.params_infile)} not found.')
|
||||
return False
|
||||
@@ -24,4 +30,38 @@ class TestAutopickerGlobal():
|
||||
|
||||
def test_autopicker(self):
|
||||
assert self.init(), 'Initialization failed due to missing input files.'
|
||||
#autoPyLoT(inputfile=self.params_infile, eventid='20171010_063224.a')
|
||||
# check for output file in test directory and remove it if necessary
|
||||
if os.path.isfile(self.fname_outfile_xml):
|
||||
os.remove(self.fname_outfile_xml)
|
||||
autoPyLoT(inputfile=self.params_infile, eventid='20171010_063224.a', obspyDMT_wfpath='processed')
|
||||
|
||||
# test for different known output files if they are identical or not
|
||||
compare_pickfiles(self.fname_outfile_xml, 'PyLoT_20171010_063224.a_autopylot.xml', True)
|
||||
compare_pickfiles(self.fname_outfile_xml, 'PyLoT_20171010_063224.a_saved_from_GUI.xml', True)
|
||||
compare_pickfiles(self.fname_outfile_xml, 'PyLoT_20171010_063224.a_corrected_taup_times_0.03-0.5_P.xml', False)
|
||||
|
||||
|
||||
def compare_pickfiles(pickfile1: str, pickfile2: str, samefile: bool = True) -> None:
|
||||
"""
|
||||
Compare the pick times and errors from two pick files.
|
||||
|
||||
Parameters:
|
||||
pickfile1 (str): The path to the first pick file.
|
||||
pickfile2 (str): The path to the second pick file.
|
||||
samefile (bool): A flag indicating whether the two files are expected to be the same. Defaults to True.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
cat1 = read_events(pickfile1)
|
||||
cat2 = read_events(pickfile2)
|
||||
picks1 = sorted(cat1[0].picks, key=lambda pick: str(pick.waveform_id))
|
||||
picks2 = sorted(cat2[0].picks, key=lambda pick: str(pick.waveform_id))
|
||||
pick_times1 = [pick.time for pick in picks1]
|
||||
pick_times2 = [pick.time for pick in picks2]
|
||||
pick_terrs1 = [pick.time_errors for pick in picks1]
|
||||
pick_terrs2 = [pick.time_errors for pick in picks2]
|
||||
|
||||
# check if times and errors are identical or not depending on the samefile flag
|
||||
assert (pick_times1 == pick_times2) is samefile, 'Pick times error'
|
||||
assert (pick_terrs1 == pick_terrs2) is samefile, 'Pick time errors errors'
|
||||
|
||||
@@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
||||
@@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
import pytest
|
||||
|
||||
import obspy
|
||||
from obspy import UTCDateTime
|
||||
@@ -105,7 +106,6 @@ class TestAutopickStation(unittest.TestCase):
|
||||
# show complete diff when difference in results dictionaries are found
|
||||
self.maxDiff = None
|
||||
|
||||
# @skip("Works")
|
||||
def test_autopickstation_taupy_disabled_gra1(self):
|
||||
expected = {
|
||||
'P': {'picker': 'auto', 'snrdb': 15.405649120980094, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None,
|
||||
@@ -121,8 +121,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_gra1(self):
|
||||
@@ -140,8 +140,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_gra2(self):
|
||||
@@ -157,8 +157,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA2', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_gra2(self):
|
||||
@@ -175,8 +175,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA2', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_ech(self):
|
||||
@@ -190,8 +190,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
'fm': None, 'spe': None, 'channel': u'LHE'}}
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_disabled)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('ECH', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_ech(self):
|
||||
@@ -208,8 +208,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('ECH', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_fiesa(self):
|
||||
@@ -224,8 +224,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
'fm': None, 'spe': None, 'channel': u'LHE'}}
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_disabled)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('FIESA', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_fiesa(self):
|
||||
@@ -242,8 +242,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('FIESA', station)
|
||||
|
||||
def test_autopickstation_gra1_z_comp_missing(self):
|
||||
@@ -272,7 +272,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=wfstream, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_a106_taupy_enabled(self):
|
||||
@@ -290,7 +291,9 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.a106, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
|
||||
|
||||
def test_autopickstation_station_missing_in_metadata(self):
|
||||
"""This station is not in the metadata, but Taupy is enabled. Taupy should exit cleanly and modify the starttime
|
||||
@@ -311,8 +314,37 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.a005a, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
|
||||
|
||||
def run_dict_comparison(result, expected):
|
||||
for key, expected_value in expected.items():
|
||||
if isinstance(expected_value, dict):
|
||||
run_dict_comparison(result[key], expected[key])
|
||||
else:
|
||||
res = result[key]
|
||||
if isinstance(res, UTCDateTime) and isinstance(expected_value, UTCDateTime):
|
||||
res = res.timestamp
|
||||
expected_value = expected_value.timestamp
|
||||
assert expected_value == pytest.approx(res), f'{key}: {expected_value} != {res}'
|
||||
|
||||
|
||||
def compare_dicts(result, expected, hint=''):
|
||||
try:
|
||||
run_dict_comparison(result, expected)
|
||||
except AssertionError:
|
||||
raise AssertionError(f'{hint}Dictionaries not equal.'
|
||||
f'\n\n<<Expected>>\n{pretty_print_dict(expected)}'
|
||||
f'\n\n<<Result>>\n{pretty_print_dict(result)}')
|
||||
|
||||
|
||||
def pretty_print_dict(dct):
|
||||
retstr = ''
|
||||
for key, value in sorted(dct.items(), key=lambda x: x[0]):
|
||||
retstr += f"{key} : {value}\n"
|
||||
|
||||
return retstr
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
Reference in New Issue
Block a user