36 Commits

Author SHA1 Message Date
28f75cedcb Merge branch 'refs/heads/develop' into correlation_picker 2024-09-11 10:31:50 +02:00
e02b62696d [bugfix] no actual UTCDateTime object was used to check metadata availability for check4rotated 2024-09-10 16:59:02 +02:00
e4217f0e30 [critical] fixing a major bug in checksignallength, testing needed 2024-09-10 16:58:12 +02:00
8f154e70d7 [minor] plot coloring 2024-09-10 16:57:18 +02:00
6542b6cc4f [minor] slightly improved test output 2024-09-10 16:57:00 +02:00
5ab6c494c5 [update] increased code readability and improved figures created in autopick.py and picker.py 2024-09-10 16:16:46 +02:00
3da47c6f6b [revert] changed slope calculation in AICPicker back to older state (probably causing problems changing results in test_autopickstation.py) 2024-09-09 16:56:38 +02:00
cc7716a2b7 [minor] improved unittest result 2024-09-09 16:05:02 +02:00
03947d2363 [update] removed bad STA/LTA implementation from CF class 2024-09-09 14:42:54 +02:00
e1b0d48527 [refactor] removed unused parameter "data" from calcCF methods 2024-09-09 14:20:41 +02:00
431dbe8924 [testing] improved dictionary comparison. Failed tests have completely different picks (not only snrdb) 2024-08-30 15:07:31 +02:00
63810730e5 [bugfix] added missing parameter "taup_phases" introduced a long time ago into default parameters and parameters for unit tests 2024-08-30 14:51:30 +02:00
f2159c47f9 [testing] brought test_autopickstation up-to-date using, removing deprecated methods and using pytest.approx
Certain tests fail on snrdb calculation which has to be examined (WIP)
2024-08-30 12:41:16 +02:00
424d42aa1c Merge branch 'refs/heads/develop' into correlation_picker
# Conflicts:
#	pylot/core/pick/charfuns.py
#	tests/test_autopicker/pylot_alparray_mantle_corr_stack_0.03-0.5.in
#	tests/test_autopicker/test_autopylot.py
2024-08-29 16:37:15 +02:00
2cea10088d [update] added test for AutoPyLoT, added test files for correlation picker as well 2024-08-29 16:35:04 +02:00
466f19eb2e [bugfix] fixed import for tukey in newer scipy versions 2024-08-28 18:01:03 +02:00
5d90904838 Merge branch 'develop' into correlation_picker 2024-08-27 17:46:21 +02:00
29107ee40c [update] WIP: adding tests for autopylot (global) 2024-08-26 17:18:41 +02:00
db11e125c0 [todos] add todos 2024-08-09 16:53:21 +02:00
b59232d77b [bugfix] function name accidentally overwritten on parameter renaming 2024-08-09 16:52:57 +02:00
176e93d833 [refactor] finished annotations (type hints) 2024-08-09 16:52:32 +02:00
759e7bb848 [bugfix] partially reverted signature of an inner function with shadowed variable name
[refactor] minor
2024-08-09 16:24:40 +02:00
61c3f40063 Merge branch 'develop' into correlation_picker 2024-08-09 15:50:46 +02:00
67f34cc871 Merge branch 'develop' into correlation_picker
# Conflicts:
#	pylot.yml
#	requirements.txt
2024-08-09 15:05:30 +02:00
f4f48a930f [refactor] moved unittest to existing test folder 2024-08-09 15:03:55 +02:00
a068bb8457 [update] refactoring, added type hints 2024-08-08 16:49:15 +02:00
452f2a2e18 [bugfix] test raised different Exception than planned 2024-08-08 14:41:16 +02:00
c3a2ef5022 [minor] changed test to be approximately equal to test result on different machine 2024-08-08 11:28:10 +02:00
8e7bd87711 [new] added some unit tests for correlation picker (WIP) 2024-08-07 17:11:27 +02:00
d5817adc46 [merge] changes to correlation picker from different machines that were not committed 2024-08-07 10:17:35 +02:00
14f01ec46d Merge branch 'correlation_picker' of git.geophysik.ruhr-uni-bochum.de:marcel/pylot into correlation_picker 2024-08-07 10:08:57 +02:00
1b074d14ff [update] WIP: Adding type hints, docstrings etc. 2024-08-06 16:03:50 +02:00
ce71c549ca [bugfix] removed parameter that was re-introduced accidentally from manual merge 2024-08-06 16:03:16 +02:00
c4220b389e Merge branch 'correlation_picker' of git.geophysik.ruhr-uni-bochum.de:marcel/pylot into correlation_picker 2024-07-25 15:36:06 +02:00
0f29d0e20d [minor] small modifications (naming conventions) 2024-07-25 14:50:40 +02:00
cdcd226c87 [initial] adding files from correlation picker 2024-07-24 14:07:13 +02:00
23 changed files with 2440 additions and 108 deletions

View File

@@ -2196,7 +2196,8 @@ class MainWindow(QMainWindow):
if event.pylot_autopicks:
self.drawPicks(picktype='auto')
if event.pylot_picks or event.pylot_autopicks:
self.locateEventAction.setEnabled(True)
if not self._inputs.get('extent') == 'global':
self.locateEventAction.setEnabled(True)
self.qualities_action.setEnabled(True)
self.eventlist_xml_action.setEnabled(True)
@@ -2631,7 +2632,6 @@ class MainWindow(QMainWindow):
picks=self.getPicksOnStation(station, 'manual'),
autopicks=self.getPicksOnStation(station, 'auto'),
metadata=self.metadata, event=event,
model=self.inputs.get('taup_model'),
filteroptions=self.filteroptions, wftype=wftype,
show_comp_data=self.dataPlot.comp_checkbox.isChecked())
if self.filterActionP.isChecked():

View File

@@ -41,6 +41,7 @@ global #extent# %extent of a
1150.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
P,Pdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
0.05 0.5 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.05 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]

View File

@@ -40,7 +40,8 @@ local #extent# %extent of a
-0.5 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation
iasp91 #taup_model# %define TauPy model for traveltime estimation
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
2.0 20.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2.0 30.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2.0 10.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]

View File

@@ -40,7 +40,8 @@ local #extent# %extent of a
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation
iasp91 #taup_model# %define TauPy model for traveltime estimation
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
2.0 10.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2.0 12.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2.0 8.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]

View File

@@ -9,7 +9,7 @@ PyLoT - the Python picking and Localization Tool
This python library contains a graphical user interfaces for picking
seismic phases. This software needs ObsPy (http://github.com/obspy/obspy/wiki)
and the Qt4 libraries to be installed first.
and the Qt libraries to be installed first.
PILOT has been developed in Mathworks' MatLab. In order to distribute
PILOT without facing portability problems, it has been decided to re-

View File

@@ -501,7 +501,7 @@ defaults = {'datapath': {'type': str,
'taup_model': {'type': str,
'tooltip': 'Define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6',
'value': None,
'value': 'iasp91',
'namestring': 'TauPy model'},
'taup_phases': {'type': str,

View File

@@ -262,6 +262,10 @@ class AutopickStation(object):
self.metadata = metadata
self.origin = origin
# initialize TauPy pick estimates
self.estFirstP = None
self.estFirstS = None
# initialize picking results
self.p_results = PickingResults()
self.s_results = PickingResults()
@@ -443,15 +447,15 @@ class AutopickStation(object):
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
estFirstP = 0
estFirstS = 0
arrival_time_p = 0
arrival_time_s = 0
if len(phases['P']) > 0:
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
arrP, arrival_time_p = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
if len(phases['S']) > 0:
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
arrS, arrival_time_s = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
return estFirstP, estFirstS
' origin time using TauPy'.format(arrival_time_p, arrival_time_s))
return arrival_time_p, arrival_time_s
def exit_taupy():
"""If taupy failed to calculate theoretical starttimes, picking continues.
@@ -477,10 +481,13 @@ class AutopickStation(object):
raise AttributeError('No source origins given!')
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
estFirstP, estFirstS = first_PS_onsets(arrivals)
arrival_P, arrival_S = first_PS_onsets(arrivals)
self.estFirstP = (self.origin[0].time + arrival_P) - self.ztrace.stats.starttime
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
self.pickparams["pstart"] += self.estFirstP
self.pickparams["pstop"] += self.estFirstP
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
@@ -491,9 +498,10 @@ class AutopickStation(object):
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
self.estFirstS = (self.origin[0].time + arrival_S) - trace_s_start
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start
self.pickparams["sstart"] += self.estFirstS
self.pickparams["sstop"] += self.estFirstS
print('autopick: CF calculation times respectively:'
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
@@ -609,6 +617,12 @@ class AutopickStation(object):
# plot tapered trace filtered with bpz2 filter settings
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
label='Data')
# plot pickwindows for P
pstart, pstop = self.pickparams['pstart'], self.pickparams['pstop']
if pstart is not None and pstop is not None:
ax1.axvspan(pstart, pstop, color='r', alpha=0.1, zorder=0, label='P window')
if self.estFirstP is not None:
ax1.axvline(self.estFirstP, ls='dashed', color='r', alpha=0.4, label='TauPy estimate')
if self.p_results.weight < 4:
# plot CF of initial onset (HOScf or ARZcf)
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
@@ -713,6 +727,15 @@ class AutopickStation(object):
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
# plot pickwindows for S
sstart, sstop = self.pickparams['sstart'], self.pickparams['sstop']
if sstart is not None and sstop is not None:
for axis in [ax2, ax3]:
axis.axvspan(sstart, sstop, color='b', alpha=0.1, zorder=0, label='S window')
if self.estFirstS is not None:
axis.axvline(self.estFirstS, ls='dashed', color='b', alpha=0.4, label='TauPy estimate')
ax3.legend(loc=1)
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
@@ -835,14 +858,21 @@ class AutopickStation(object):
self.cf1 = None
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
' is corrupted'.format(self.pickparams["algoP"])
# get the original waveform stream from first CF class cut to identical length as CF for plotting
cut_ogstream = self.cf1.getDataArray(self.cf1.getCut())
# MP: Rename to cf_stream for further use of z_copy and to prevent chaos when z_copy suddenly becomes a cf
# stream and later again a waveform stream
cf_stream = z_copy.copy()
cf_stream[0].data = self.cf1.getCF()
# calculate AIC cf from first cf (either HOS or ARZ)
z_copy[0].data = self.cf1.getCF()
aiccf = AICcf(z_copy, cuttimes)
aiccf = AICcf(cf_stream, cuttimes)
# get preliminary onset time from AIC-CF
self.set_current_figure('aicFig')
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
linecolor=self.current_linecolor)
linecolor=self.current_linecolor, ogstream=cut_ogstream)
# save aicpick for plotting later
self.p_data.aicpick = aicpick
# add pstart and pstop to aic plot
@@ -855,7 +885,7 @@ class AutopickStation(object):
label='P stop')
ax.legend(loc=1)
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
Pflag = self._pick_p_quality_control(aicpick, cf_stream, tr_filt)
# go on with processing if AIC onset passes quality control
slope = aicpick.getSlope()
if not slope: slope = 0
@@ -894,7 +924,7 @@ class AutopickStation(object):
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
self.pickparams["ausP"],
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
self.current_linecolor)
self.current_linecolor, ogstream=cut_ogstream)
# save PragPicker result for plotting
self.p_data.refPpick = refPpick
self.p_results.mpp = refPpick.getpick()
@@ -1146,11 +1176,14 @@ class AutopickStation(object):
# calculate AIC cf
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
# get the original waveform stream cut to identical length as CF for plotting
ogstream = haiccf.getDataArray(haiccf.getCut())
# get preliminary onset time from AIC cf
self.set_current_figure('aicARHfig')
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
linecolor=self.current_linecolor)
linecolor=self.current_linecolor, ogstream=ogstream)
# save pick for later plotting
self.aicarhpick = aicarhpick

View File

@@ -21,6 +21,7 @@ try:
from scipy.signal import tukey
except ImportError:
from scipy.signal.windows import tukey
from obspy.core import Stream
from pylot.core.pick.utils import PickingFailedException
@@ -59,7 +60,7 @@ class CharacteristicFunction(object):
self.setOrder(order)
self.setFnoise(fnoise)
self.setARdetStep(t2)
self.calcCF(self.getDataArray())
self.calcCF()
self.arpara = np.array([])
self.xpred = np.array([])
@@ -211,17 +212,15 @@ class CharacteristicFunction(object):
data = self.orig_data.copy()
return data
def calcCF(self, data=None):
self.cf = data
def calcCF(self):
pass
class AICcf(CharacteristicFunction):
def calcCF(self, data):
def calcCF(self):
"""
Function to calculate the Akaike Information Criterion (AIC) after Maeda (1985).
:param data: data, time series (whether seismogram or CF)
:type data: tuple
:return: AIC function
:rtype:
"""
@@ -259,13 +258,11 @@ class HOScf(CharacteristicFunction):
"""
super(HOScf, self).__init__(data, cut, pickparams["tlta"], pickparams["hosorder"])
def calcCF(self, data):
def calcCF(self):
"""
Function to calculate skewness (statistics of order 3) or kurtosis
(statistics of order 4), using one long moving window, as published
in Kueperkoch et al. (2010), or order 2, i.e. STA/LTA.
:param data: data, time series (whether seismogram or CF)
:type data: tuple
:return: HOS cf
:rtype:
"""
@@ -280,47 +277,28 @@ class HOScf(CharacteristicFunction):
elif self.getOrder() == 4: # this is kurtosis
y = np.power(xnp, 4)
y1 = np.power(xnp, 2)
elif self.getOrder() == 2: # this is variance, used for STA/LTA processing
y = np.power(xnp, 2)
y1 = np.power(xnp, 2)
# Initialisation
# t2: long term moving window
ilta = int(round(self.getTime2() / self.getIncrement()))
ista = int(round((self.getTime2() / 10) / self.getIncrement())) # TODO: still hard coded!!
lta = y[0]
lta1 = y1[0]
sta = y[0]
# moving windows
LTA = np.zeros(len(xnp))
STA = np.zeros(len(xnp))
for j in range(0, len(xnp)):
if j < 4:
LTA[j] = 0
STA[j] = 0
elif j <= ista and self.getOrder() == 2:
lta = (y[j] + lta * (j - 1)) / j
if self.getOrder() == 2:
sta = (y[j] + sta * (j - 1)) / j
# elif j < 4:
elif j <= ilta:
lta = (y[j] + lta * (j - 1)) / j
lta1 = (y1[j] + lta1 * (j - 1)) / j
if self.getOrder() == 2:
sta = (y[j] - y[j - ista]) / ista + sta
else:
lta = (y[j] - y[j - ilta]) / ilta + lta
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
if self.getOrder() == 2:
sta = (y[j] - y[j - ista]) / ista + sta
# define LTA
if self.getOrder() == 3:
LTA[j] = lta / np.power(lta1, 1.5)
elif self.getOrder() == 4:
LTA[j] = lta / np.power(lta1, 2)
else:
LTA[j] = lta
STA[j] = sta
# remove NaN's with first not-NaN-value,
# so autopicker doesnt pick discontinuity at start of the trace
@@ -329,10 +307,7 @@ class HOScf(CharacteristicFunction):
first = ind[0]
LTA[:first] = LTA[first]
if self.getOrder() > 2:
self.cf = LTA
else: # order 2 means STA/LTA!
self.cf = STA / LTA
self.cf = LTA
self.xcf = x
@@ -342,12 +317,10 @@ class ARZcf(CharacteristicFunction):
super(ARZcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Parorder"],
fnoise=pickparams["addnoise"])
def calcCF(self, data):
def calcCF(self):
"""
function used to calculate the AR prediction error from a single vertical trace. Can be used to pick
P onsets.
:param data:
:type data: ~obspy.core.stream.Stream
:return: ARZ cf
:rtype:
"""
@@ -478,14 +451,12 @@ class ARHcf(CharacteristicFunction):
super(ARHcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
fnoise=pickparams["addnoise"])
def calcCF(self, data):
def calcCF(self):
"""
Function to calculate a characteristic function using autoregressive modelling of the waveform of
both horizontal traces.
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
between the predicted and the actual waveform servers as a characteristic function.
:param data: wavefor stream
:type data: ~obspy.core.stream.Stream
:return: ARH cf
:rtype:
"""
@@ -634,14 +605,12 @@ class AR3Ccf(CharacteristicFunction):
super(AR3Ccf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
fnoise=pickparams["addnoise"])
def calcCF(self, data):
def calcCF(self):
"""
Function to calculate a characteristic function using autoregressive modelling of the waveform of
all three traces.
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
between the predicted and the actual waveform servers as a characteristic function
:param data: stream holding all three traces
:type data: ~obspy.core.stream.Stream
:return: AR3C cf
:rtype:
"""

View File

@@ -37,7 +37,8 @@ class AutoPicker(object):
warnings.simplefilter('ignore')
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None,
fig=None, linecolor='k', ogstream=None):
"""
Create AutoPicker object
:param cf: characteristic function, on which the picking algorithm is applied
@@ -59,12 +60,15 @@ class AutoPicker(object):
:type fig: `~matplotlib.figure.Figure`
:param linecolor: matplotlib line color string
:type linecolor: str
:param ogstream: original stream (waveform), e.g. for plotting purposes
:type ogstream: `~obspy.core.stream.Stream`
"""
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
self._linecolor = linecolor
self._pickcolor_p = 'b'
self.cf = cf.getCF()
self.ogstream = ogstream
self.Tcf = cf.getTimeArray()
self.Data = cf.getXCF()
self.dt = cf.getIncrement()
@@ -173,7 +177,7 @@ class AICPicker(AutoPicker):
nn = np.isnan(self.cf)
if len(nn) > 1:
self.cf[nn] = 0
# taper AIC-CF to get rid off side maxima
# taper AIC-CF to get rid of side maxima
tap = np.hanning(len(self.cf))
aic = tap * self.cf + max(abs(self.cf))
# smooth AIC-CF
@@ -316,16 +320,7 @@ class AICPicker(AutoPicker):
plt.close(fig)
return
iislope = islope[0][0:imax + 1]
# MP MP change slope calculation
# get all maxima of aicsmooth
iaicmaxima = argrelmax(aicsmooth)[0]
# get first index of maximum after pickindex (indices saved in iaicmaxima)
aicmax = iaicmaxima[np.where(iaicmaxima > pickindex)[0]]
if len(aicmax) > 0:
iaicmax = aicmax[0]
else:
iaicmax = -1
dataslope = aicsmooth[pickindex: iaicmax]
dataslope = self.Data[0].data[iislope]
# calculate slope as polynomal fit of order 1
xslope = np.arange(0, len(dataslope), 1)
try:
@@ -336,7 +331,7 @@ class AICPicker(AutoPicker):
else:
self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
# normalize slope to maximum of cf to make it unit independent
self.slope /= aicsmooth[iaicmax]
self.slope /= self.Data[0].data[icfmax]
except Exception as e:
print("AICPicker: Problems with data fitting! {}".format(e))
@@ -356,6 +351,12 @@ class AICPicker(AutoPicker):
self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
# plot the original waveform also for evaluation of the CF and pick
if self.ogstream:
data = self.ogstream[0].data
if len(data) == len(self.Tcf):
ax1.plot(self.Tcf, 0.5 * data / max(data), 'k', label='Seismogram', alpha=0.3, zorder=0,
lw=0.5)
if self.Pick is not None:
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
@@ -376,7 +377,7 @@ class AICPicker(AutoPicker):
label='Signal Window')
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
label='Slope Window')
ax2.plot(self.Tcf[pickindex: iaicmax], datafit, 'g', linewidth=2,
ax2.plot(self.Tcf[iislope], datafit, 'g', linewidth=2,
label='Slope') # MP MP changed temporarily!
if self.slope is not None:

View File

@@ -15,7 +15,7 @@ import numpy as np
from obspy.core import Stream, UTCDateTime
from scipy.signal import argrelmax
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents, common_range
def earllatepicker(X, nfac, TSNR, Pick1, iplot=0, verbosity=1, fig=None, linecolor='k'):
@@ -828,14 +828,22 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
if len(X) > 1:
# all three components available
# make sure, all components have equal lengths
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
x1 = X[0][0:ilen]
x2 = X[1][0:ilen]
x3 = X[2][0:ilen]
earliest_starttime = min(tr.stats.starttime for tr in X)
cuttimes = common_range(X)
X = X.slice(cuttimes[0], cuttimes[1])
x1, x2, x3 = X[:3]
if not (len(x1) == len(x2) == len(x3)):
raise PickingFailedException('checksignallength: unequal lengths of components!')
# get RMS trace
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
ilen = len(rms)
dt = earliest_starttime - X[0].stats.starttime
pick -= dt
else:
x1 = X[0].data
x2 = x3 = None
ilen = len(x1)
rms = abs(x1)
@@ -874,6 +882,10 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
fig._tight = True
ax = fig.add_subplot(111)
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
ax.plot(t, x1, 'k', alpha=0.3, lw=0.3, zorder=0)
if x2 is not None and x3 is not None:
ax.plot(t, x2, 'r', alpha=0.3, lw=0.3, zorder=0)
ax.plot(t, x3, 'g', alpha=0.3, lw=0.3, zorder=0)
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
@@ -883,6 +895,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
ax.set_ylabel('Counts')
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
ax.set_xlim(pickparams["pstart"], pickparams["pstop"])
ax.set_yticks([])
if plt_flag == 1:
fig.show()

View File

@@ -521,7 +521,6 @@ class Array_map(QtWidgets.QWidget):
picks=self._parent.get_current_event().getPick(station),
autopicks=self._parent.get_current_event().getAutopick(station),
filteroptions=self._parent.filteroptions, metadata=self.metadata,
model=self.parameter.get('taup_model'),
event=pyl_mw.get_current_event())
except Exception as e:
message = 'Could not generate Plot for station {st}.\n {er}'.format(st=station, er=e)

View File

@@ -1076,7 +1076,7 @@ def check4rotated(data, metadata=None, verbosity=1):
return wfs_in
# check metadata quality
t_start = full_range(wfs_in)
t_start = full_range(wfs_in)[0]
try:
azimuths = []
dips = []

View File

@@ -1871,13 +1871,14 @@ class PickDlg(QDialog):
def __init__(self, parent=None, data=None, data_compare=None, station=None, network=None, location=None, picks=None,
autopicks=None, rotate=False, parameter=None, embedded=False, metadata=None, show_comp_data=False,
event=None, filteroptions=None, model=None, wftype=None):
event=None, filteroptions=None, wftype=None):
super(PickDlg, self).__init__(parent, Qt.Window)
self.orig_parent = parent
self.setAttribute(Qt.WA_DeleteOnClose)
# initialize attributes
self.parameter = parameter
model = self.parameter.get('taup_model')
self._embedded = embedded
self.showCompData = show_comp_data
self.station = station
@@ -2270,8 +2271,8 @@ class PickDlg(QDialog):
arrivals = func[plot](source_origin.depth,
source_origin.latitude,
source_origin.longitude,
station_coords['latitude'],
station_coords['longitude'],
station_coords.get('latitude'),
station_coords.get('longitude'),
phases)
self.arrivals = arrivals

View File

@@ -0,0 +1,2 @@
# -*- coding: utf-8 -*-
#

View File

@@ -0,0 +1,90 @@
############################# correlation parameters #####################################
# min_corr_stacking: minimum correlation coefficient for building beam trace
# min_corr_export: minimum correlation coefficient for pick export
# min_stack: minimum number of stations for building beam trace
# t_before: correlation window before pick
# t_after: correlation window after pick#
# cc_maxlag: maximum shift for initial correlation
# cc_maxlag2: maximum shift for second (final) correlation (also for calculating pick uncertainty)
# initial_pick_outlier_threshold: (hopefully) threshold for excluding large outliers of initial (AIC) picks
# export_threshold: automatically exclude all onsets which deviate more than this threshold from corrected taup onsets
# min_picks_export: minimum number of correlated picks for export
# min_picks_autopylot: minimum number of reference autopicks picks to continue with event
# check_RMS: do RMS check to search for restitution errors (very experimental)
# use_taupy_onsets: use taupy onsets as reference picks instead of external picks
# station_list: use the following stations as reference for stacking
# use_stacked_trace: use existing stacked trace if found (spare re-computation)
# data_dir: obspyDMT data subdirectory (e.g. 'raw', 'processed')
# pickfile_extension: use quakeML files (PyLoT output) with the following extension, e.g. '_autopylot' for pickfiles
# such as 'PyLoT_20170501_141822_autopylot.xml'
logging: info
pick_phases: ['P', 'S']
# P-phase
P:
min_corr_stacking: 0.8
min_corr_export: 0.6
min_stack: 20
t_before: 30.
t_after: 50.
cc_maxlag: 50.
cc_maxlag2: 5.
initial_pick_outlier_threshold: 30.
export_threshold: 2.5
min_picks_export: 100
min_picks_autopylot: 50
check_RMS: True
use_taupy_onsets: False
station_list: ['HU.MORH', 'HU.TIH', 'OX.FUSE', 'OX.BAD']
use_stacked_trace: False
data_dir: 'processed'
pickfile_extension: '_autopylot'
dt_stacking: [250, 250]
# filter for first correlation (rough)
filter_options:
freqmax: 0.5
freqmin: 0.03
# filter for second correlation (fine)
filter_options_final:
freqmax: 0.5
freqmin: 0.03
filter_type: bandpass
sampfreq: 20.0
# S-phase
S:
min_corr_stacking: 0.7
min_corr_export: 0.6
min_stack: 20
t_before: 60.
t_after: 60.
cc_maxlag: 100.
cc_maxlag2: 25.
initial_pick_outlier_threshold: 30.
export_threshold: 5.0
min_picks_export: 200
min_picks_autopylot: 50
check_RMS: True
use_taupy_onsets: False
station_list: ['HU.MORH','HU.TIH', 'OX.FUSE', 'OX.BAD']
use_stacked_trace: False
data_dir: 'processed'
pickfile_extension: '_autopylot'
dt_stacking: [250, 250]
# filter for first correlation (rough)
filter_options:
freqmax: 0.1
freqmin: 0.01
# filter for second correlation (fine)
filter_options_final:
freqmax: 0.2
freqmin: 0.01
filter_type: bandpass
sampfreq: 20.0

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,40 @@
#!/bin/bash
#ulimit -s 8192
#ulimit -v $(ulimit -v | awk '{printf("%d",$1*0.95)}')
#ulimit -v
#655360
source /opt/anaconda3/etc/profile.d/conda.sh
conda activate pylot_311
NSLOTS=20
#qsub -l low -cwd -l "os=*stretch" -pe smp 40 submit_pick_corr_correction.sh
#$ -l low
#$ -l h_vmem=6G
#$ -cwd
#$ -pe smp 20
#$ -N corr_pick
export PYTHONPATH="$PYTHONPATH:/home/marcel/git/pylot_tools/"
export PYTHONPATH="$PYTHONPATH:/home/marcel/git/"
export PYTHONPATH="$PYTHONPATH:/home/marcel/git/pylot/"
#export MKL_NUM_THREADS=${NSLOTS:=1}
#export NUMEXPR_NUM_THREADS=${NSLOTS:=1}
#export OMP_NUM_THREADS=${NSLOTS:=1}
#python pick_correlation_correction.py '/data/AlpArray_Data/dmt_database_mantle_M5.8-6.0' '/home/marcel/.pylot/pylot_alparray_mantle_corr_stack_0.03-0.5.in' -pd -n ${NSLOTS:=1} -istart 0 -istop 100
#python pick_correlation_correction.py '/data/AlpArray_Data/dmt_database_mantle_M5.8-6.0' '/home/marcel/.pylot/pylot_alparray_mantle_corr_stack_0.03-0.5.in' -pd -n ${NSLOTS:=1} -istart 100 -istop 200
#python pick_correlation_correction.py '/data/AlpArray_Data/dmt_database_mantle_M6.0-6.5' '/home/marcel/.pylot/pylot_alparray_mantle_corr_stack_0.03-0.5.in' -pd -n ${NSLOTS:=1} -istart 0 -istop 100
#python pick_correlation_correction.py '/data/AlpArray_Data/dmt_database_mantle_M5.8-6.0' '/home/marcel/.pylot/pylot_alparray_mantle_corr_stack_0.03-0.5.in' -pd -n ${NSLOTS:=1} -istart 100 -istop 200
#python pick_correlation_correction.py 'H:\sciebo\dmt_database' 'H:\Sciebo\dmt_database\pylot_alparray_mantle_corr_S_0.01-0.2.in' -pd -n 4 -t
pylot_infile='/home/marcel/.pylot/pylot_alparray_syn_fwi_mk6_it3.in'
#pylot_infile='/home/marcel/.pylot/pylot_adriaarray_corr_P_and_S.in'
# THIS SCRIPT SHOLD BE CALLED BY "submit_to_grid_engine.py" using the following line:
python pick_correlation_correction.py $1 $pylot_infile -pd -n ${NSLOTS:=1} -istart $2 --params 'parameters_fwi_mk6_it3.yaml'
#--event_blacklist eventlist.txt

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python
import subprocess
fnames = [
('/data/AlpArray_Data/dmt_database_synth_model_mk6_it3_no_rotation', 0),
]
#fnames = [('/data/AlpArray_Data/dmt_database_mantle_0.01-0.2_SKS-phase', 0),
# ('/data/AlpArray_Data/dmt_database_mantle_0.01-0.2_S-phase', 0),]
####
script_location = '/home/marcel/VersionCtrl/git/code_base/correlation_picker/submit_pick_corr_correction.sh'
####
for fnin, istart in fnames:
input_cmds = f'qsub -q low.q@minos15,low.q@minos14,low.q@minos13,low.q@minos12,low.q@minos11 {script_location} {fnin} {istart}'
print(input_cmds)
print(subprocess.check_output(input_cmds.split()))

View File

@@ -0,0 +1,61 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import glob
import json
from obspy import read_events
from pylot.core.util.dataprocessing import Metadata
from pylot.core.util.obspyDMT_interface import qml_from_obspyDMT
def get_event_obspy_dmt(eventdir):
event_pkl_file = os.path.join(eventdir, 'info', 'event.pkl')
if not os.path.exists(event_pkl_file):
raise IOError('Could not find event path for event: {}'.format(eventdir))
event = qml_from_obspyDMT(event_pkl_file)
return event
def get_event_pylot(eventdir, extension=''):
event_id = get_event_id(eventdir)
filename = os.path.join(eventdir, 'PyLoT_{}{}.xml'.format(event_id, extension))
if not os.path.isfile(filename):
return
cat = read_events(filename)
return cat[0]
def get_event_id(eventdir):
event_id = os.path.split(eventdir)[-1]
return event_id
def get_picks(eventdir, extension=''):
event_id = get_event_id(eventdir)
filename = 'PyLoT_{}{}.xml'
filename = filename.format(event_id, extension)
fpath = os.path.join(eventdir, filename)
fpaths = glob.glob(fpath)
if len(fpaths) == 1:
cat = read_events(fpaths[0])
picks = cat[0].picks
return picks
elif len(fpaths) == 0:
print('get_picks: File not found: {}'.format(fpath))
return
print(f'WARNING: Ambiguous pick file specification. Found the following pick files {fpaths}\nFilemask: {fpath}')
return
def write_json(object, fname):
with open(fname, 'w') as outfile:
json.dump(object, outfile, sort_keys=True, indent=4)
def get_metadata(eventdir):
metadata_path = os.path.join(eventdir, 'resp')
metadata = Metadata(inventory=metadata_path, verbosity=0)
return metadata

View File

@@ -41,6 +41,7 @@ global #extent# %extent of a
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]

View File

@@ -41,6 +41,7 @@ global #extent# %extent of a
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]

View File

@@ -1,6 +1,7 @@
import os
import sys
import unittest
import pytest
import obspy
from obspy import UTCDateTime
@@ -105,7 +106,6 @@ class TestAutopickStation(unittest.TestCase):
# show complete diff when difference in results dictionaries are found
self.maxDiff = None
# @skip("Works")
def test_autopickstation_taupy_disabled_gra1(self):
expected = {
'P': {'picker': 'auto', 'snrdb': 15.405649120980094, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None,
@@ -121,8 +121,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_disabled,
metadata=(None, None))
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('GRA1', station)
def test_autopickstation_taupy_enabled_gra1(self):
@@ -140,8 +140,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('GRA1', station)
def test_autopickstation_taupy_disabled_gra2(self):
@@ -157,8 +157,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_disabled,
metadata=(None, None))
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('GRA2', station)
def test_autopickstation_taupy_enabled_gra2(self):
@@ -175,8 +175,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('GRA2', station)
def test_autopickstation_taupy_disabled_ech(self):
@@ -190,8 +190,8 @@ class TestAutopickStation(unittest.TestCase):
'fm': None, 'spe': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_disabled)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('ECH', station)
def test_autopickstation_taupy_enabled_ech(self):
@@ -208,8 +208,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('ECH', station)
def test_autopickstation_taupy_disabled_fiesa(self):
@@ -224,8 +224,8 @@ class TestAutopickStation(unittest.TestCase):
'fm': None, 'spe': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_disabled)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('FIESA', station)
def test_autopickstation_taupy_enabled_fiesa(self):
@@ -242,8 +242,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('FIESA', station)
def test_autopickstation_gra1_z_comp_missing(self):
@@ -272,7 +272,8 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=wfstream, pickparam=self.pickparam_taupy_disabled,
metadata=(None, None))
self.assertEqual(expected, result)
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
self.assertEqual('GRA1', station)
def test_autopickstation_a106_taupy_enabled(self):
@@ -290,7 +291,9 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.a106, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertEqual(expected, result)
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
def test_autopickstation_station_missing_in_metadata(self):
"""This station is not in the metadata, but Taupy is enabled. Taupy should exit cleanly and modify the starttime
@@ -311,8 +314,37 @@ class TestAutopickStation(unittest.TestCase):
with HidePrints():
result, station = autopickstation(wfstream=self.a005a, pickparam=self.pickparam_taupy_enabled,
metadata=self.metadata, origin=self.origin)
self.assertEqual(expected, result)
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
def run_dict_comparison(result, expected):
for key, expected_value in expected.items():
if isinstance(expected_value, dict):
run_dict_comparison(result[key], expected[key])
else:
res = result[key]
if isinstance(res, UTCDateTime) and isinstance(expected_value, UTCDateTime):
res = res.timestamp
expected_value = expected_value.timestamp
assert expected_value == pytest.approx(res), f'{key}: {expected_value} != {res}'
def compare_dicts(result, expected, hint=''):
try:
run_dict_comparison(result, expected)
except AssertionError:
raise AssertionError(f'{hint}Dictionaries not equal.'
f'\n\n<<Expected>>\n{pretty_print_dict(expected)}'
f'\n\n<<Result>>\n{pretty_print_dict(result)}')
def pretty_print_dict(dct):
retstr = ''
for key, value in sorted(dct.items(), key=lambda x: x[0]):
retstr += f"{key} : {value}\n"
return retstr
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,76 @@
import pytest
from obspy import read, Trace, UTCDateTime
from pylot.correlation.pick_correlation_correction import XCorrPickCorrection
class TestXCorrPickCorrection():
def setup(self):
self.make_test_traces()
self.make_test_picks()
self.t_before = 2.
self.t_after = 2.
self.cc_maxlag = 0.5
def make_test_traces(self):
# take first trace of test Stream from obspy
tr1 = read()[0]
# filter trace
tr1.filter('bandpass', freqmin=1, freqmax=20)
# make a copy and shift the copy by 0.1 s
tr2 = tr1.copy()
tr2.stats.starttime += 0.1
self.trace1 = tr1
self.trace2 = tr2
def make_test_picks(self):
# create an artificial reference pick on reference trace (trace1) and another one on the 0.1 s shifted trace
self.tpick1 = UTCDateTime('2009-08-24T00:20:07.7')
# shift the second pick by 0.2 s, the correction should be around 0.1 s now
self.tpick2 = self.tpick1 + 0.2
def test_slice_trace_okay(self):
self.setup()
xcpc = XCorrPickCorrection(UTCDateTime(), Trace(), UTCDateTime(), Trace(),
t_before=self.t_before, t_after=self.t_after, cc_maxlag=self.cc_maxlag)
test_trace = self.trace1
pick_time = self.tpick2
sliced_trace = xcpc.slice_trace(test_trace, pick_time)
assert ((sliced_trace.stats.starttime == pick_time - self.t_before - self.cc_maxlag / 2)
and (sliced_trace.stats.endtime == pick_time + self.t_after + self.cc_maxlag / 2))
def test_slice_trace_fails(self):
self.setup()
test_trace = self.trace1
pick_time = self.tpick1
with pytest.raises(ValueError):
xcpc = XCorrPickCorrection(UTCDateTime(), Trace(), UTCDateTime(), Trace(),
t_before=self.t_before + 20, t_after=self.t_after, cc_maxlag=self.cc_maxlag)
xcpc.slice_trace(test_trace, pick_time)
with pytest.raises(ValueError):
xcpc = XCorrPickCorrection(UTCDateTime(), Trace(), UTCDateTime(), Trace(),
t_before=self.t_before, t_after=self.t_after + 50, cc_maxlag=self.cc_maxlag)
xcpc.slice_trace(test_trace, pick_time)
def test_cross_correlation(self):
self.setup()
# create XCorrPickCorrection object
xcpc = XCorrPickCorrection(self.tpick1, self.trace1, self.tpick2, self.trace2, t_before=self.t_before,
t_after=self.t_after, cc_maxlag=self.cc_maxlag)
# execute correlation
correction, cc_max, uncert, fwfm = xcpc.cross_correlation(False, '', '')
# define awaited test result
test_result = (-0.09983091718314982, 0.9578431835689154, 0.0015285160561610929, 0.03625786256084631)
# check results
assert pytest.approx(test_result, rel=1e-6) == (correction, cc_max, uncert, fwfm)